
COMPACTNESS PHENOMENA IN HOD
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Abstract. We prove two compactness theorems for HOD. First, if κ
is a strong limit singular cardinal with uncountable cofinality and for
stationarily many δ < κ, (δ+)HOD = δ+, then (κ+)HOD = κ+. Second,
if κ is a singular cardinal with uncountable cofinality and stationarily
many δ < κ are singular in HOD, then κ is singular in HOD. We also
discuss the optimality of these results and show that the first theorem
does not extend from HOD to other ω-club amenable inner models.

1. Introduction

In 1963, Cohen established that Cantor’s continuum problem cannot be
solved from the accepted ZFC axioms of set theory [Coh63]. This is the
problem of determining which among Cantor’s transfinite cardinal numbers

ℵ0,ℵ1,ℵ2, . . .ℵω,ℵω+1, . . .

is the cardinality of the continuum R. More precisely, what Cohen showed
is that the axioms cannot rule out that |R| = ℵ2, while Gödel [Göd39] had
already shown that the possibility |R| = ℵ1 could be ruled out either.

Of course, Cantor himself ruled out that |R| is ℵ0 by proving that the
real numbers form an uncountable set. Later König [Kön05] showed that
|R| is not equal to ℵω, ℵω+ω, or, more generally, ℵα for any limit ordinal α
of countable cofinality. Soon after Cohen’s theorem, Solovay showed that
there are no restrictions on the cardinality of the continuum besides the
ones established by Cantor and König. For example, it is consistent with
the ZFC axioms that |R| = ℵ19 or |R| = ℵω·ω+1 or |R| = ℵω5 .

The cardinality of the continuum is denoted by 2ℵ0 , recognizing that R
is equinumerous with the set of functions from N into a set of size 2. For
each cardinal number κ, 2κ denotes the cardinality of the set of functions
from a set of size κ to a set of size 2. The function κ 7→ 2κ is known as the
continuum function.

After Solovay’s result classifying all possible values of 2ℵ0 , set theorists
took up the problem of classifying the possibilities for the continuum func-
tion itself. Obviously, we have 2κ ≤ 2λ whenever κ ≤ λ. Also 2κ > κ by
Cantor’s theorem, and furthermore cf(2κ) > κ by König’s theorem.

Are there any other restrictions on the continuum function, or is the sit-
uation analogous to Solovay’s theorem for 2ℵ0 , where no further constraints
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are possible. In 1966, Easton [Eas70] showed this is precisely the case for
regular cardinals, those cardinals κ that are not the limit of fewer than κ
smaller cardinals. That is, Easton showed that no restrictions on the be-
havior of the continuum function on regular cardinals can be established in
ZFC except the ones mentioned in the previous paragraphs.

Following Easton’s theorem, the outstanding open problem in set theory
was to generalize the result to all cardinals, showing without restriction that
the continuum function obeys no laws other than those discovered by Cantor
and König. This paper is inspired by a theorem of Silver [Sil75], which
shows such a generalization of Easton’s theorem is not possible: in fact,
there are intricate and subtle restrictions on the behavior of the continuum
function at singular (i.e., non-regular) cardinals. To this day, the problem
of completely classifying the possible behavior of the continuum function
at singular cardinals remains open, though the theory of singular cardinal
arithmetic has since blossomed into one of the deepest subjects in set theory.

Silver’s theorem reveals that the value of 2ℵω1 is tied to the values of 2ℵα

for ordinals α < ω1. More precisely, if 2ℵα = ℵα+1 for all limit ordinals
α < ω1, then 2ℵω1 = ℵω1+1. More generally, he showed that if κ is a singular
cardinal of uncountable cofinality and 2λ = λ+ for a stationary set of λ < κ,
then 2κ = κ+.

Silver’s theorem can be construed as a compactness property of the con-
tinuum function. The compactness phenomenon describes a general pattern
in set theory wherein the properties of a structure are determined by its
small substructures. The most familiar compactness phenomena involve infi-
nite structures and their finite substructures: for example, the Compactness
Theorem in first-order logic states that the satisfiability of a first-order the-
ory is determined by the satisfiability of its finite fragments. Compactness
properties of larger regular cardinals often turn out to be related to large
cardinal properties, for instance the tree property and stationary reflection.
On the other hand, singular cardinals have been found to have compactness
properties that are provable in ZFC; for instance, Shelah’s singular compact-
ness theorem in algebra, which led to his solution of Whitehead’s problem
[She74].

This paper establishes analogs of Silver’s theorem in the context of set-
theoretic definability, generalizing the phenomenon of singular compactness
to this core area of higher set theory. Gödel [Göd46] introduced the concept
of ordinal definability in an attempt to formalize the intuitive concept of
mathematical definability. Roughly speaking, a set is ordinal definable if it
is definable over the universe of sets using finitely many ordinal numbers as
parameters.

The behavior of ordinal definability is highly sensitive to the structure of
the universe of sets, and for this reason it is subject to the same independence
phenomena that hinder our understanding of the continuum function. The
main results of this paper show for the first time that ordinal definability at



COMPACTNESS PHENOMENA IN HOD 3

singular cardinals of uncountable cofinality exhibits patterns of compactness
parallel to those that Silver identified for the continuum function.

Our theorems concern two invariants of ordinal definability, which play
the role of the continuum function in our analogs of Silver’s theorem. First,
we define the ordinal definable cofinality of an ordinal α, denoted by cfOD(α),
as the least ordinal δ such that there is an ordinal definable cofinal function
from δ to α. Second, we define the ordinal definable successor of α, denoted
by α+OD, as the supremum of all ordinals γ for which there is an ordinal
definable surjection from α to γ.1 With this notation in hand, we can state
our compactness theorems for ordinal definability.

Theorem. Suppose that κ is a singular cardinal with uncountable cofinality
and that {δ < κ | cfOD(δ) < δ} is stationary. Then cfOD(κ) < κ.

Our theorem on the ordinal definable successor function is significantly
harder to prove, and moreover we do not know how to prove it for arbitrary
singular cardinals.

Theorem. Suppose that κ is a singular strong limit cardinal of uncountable
cofinality and {δ < κ | δ+OD = δ+} is stationary. Then κ+OD = κ+.

The theorems above are proved by combining the technique of generic
ultrapowers (see §2.1) with variants of Vopenka’s theorem that every set
belongs to a forcing extension of HOD. In addition, in §3.1 we employ set-
theoretic forcing to show that the hypothesis employed may not be relaxed.
Thus, our results are provably optimal.

Finally, we show that the first of our compactness theorems does not
extend to arbitrary ω-club models (see p.17). This contrasts with the main
results of [Gol23] where the first author showed that most known results
about HOD — for example, the HOD dichotomy theorem — can actually
be proved for an arbitrary inner model that is ω-club amenable.

Theorem. Assume that every set T belongs to an inner model with a mea-
surable cardinal of Mitchell order 2 above rank(T ). Then for every cardinal
λ, there is an ω-club inner model M that is correct about cardinals and
cofinalities below λ while (λ+)M < λ+.

The notation of this paper is standard in set theory. In §2 we provide the
reader with some preliminaries regarding HOD and the theory of generic
ultrapowers. §3 is devoted to prove the above theorems and discuss their
optimality. Finally, in §4 we leave some related open questions.

2. Preliminaries and notation

This section collects some set-theoretic tools employed through the paper.
The material here is standard and is included just for the benefit of our
readers. We also introduce some relevant terminology.

1Of course, cfOD(α) is just the cofinality of α as computed in the inner model HOD,
and α+OD is the least cardinal of HOD that is greater than α.
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2.1. Generic ultrapowers. Fix a set X. A set I ⊆ P(X) is called an ideal
if ∅ ∈ I, X /∈ I and I is closed under subsets and finite unions. Dually,
a set F ⊆ P(X) a filter if ∅ /∈ F , X ∈ F and F is closed under supersets
and finite intersections. A filter U is called an ultrafilter if it satisfies the
following additional property: given A ∈ P(X), either A ∈ U or X \A ∈ U ;
equivalently, U is a ⊆-maximal filter.

Given an ideal I ⊆ P(X) its dual filter I∗ is defined as {X \A | A ∈ I}.
The sets of I-positive measure (denoted I+) is the collection of all A ∈ P(X)
that do not belong to I. Note that I∗ is a filter, I∗ ⊆ I+ and A ∈ I+ if
and only if A ∩B ̸= ∅ for all B ∈ I∗. These concepts have natural parallels
in the setting of filters F ⊆ P(X) as well [Jec03, §7].

Given an ideal I ⊆ P(X) define an equivalence relation ∼I on P (X) as
follows:

A ∼I B if and only if A△B ∈ I.

This yields a quotient P(X)/I, which, endowed with the order

[X] ≤ [Y ] ⇐⇒ X \ Y ∈ I,
gives rise to a Boolean algebra. After removing the zero element from
P(κ)/I the partial ordering ≤ becomes a separative order.

There is another presentation of the poset (P(X)/I \ {[∅]},≤) as P :=
(I+,⊂). The two posets are forcing equivalent in the sense that they give rise
to the same generic extensions. Indeed, the former poset is the separative
quotient of the latter. A V -generic filter G ⊆ P yields a V -ultrafilter on X
extending the dual filter I∗. If I is κ-complete then G is also V -κ-complete.2

For details concerning these facts see [Jec03, §22].
Suppose that I ⊆ P(κ) is an ideal containing all singletons and that it is

κ-complete (i.e.,
⋃

α<λAα ∈ I provided ⟨Aα | α < λ⟩ ⊆ I with λ < κ).
Let G ⊆ P be a V -generic filter. Working in V [G], we can define the

generic ultrapower of V by G. Namely, in V [G] one defines the structure

Ult(V,G) := ⟨(XV ) ∩ V )/=G,∈G⟩
where for each two functions f, g : X → V (in V )

f =G g if and only if {x ∈ X | f(x) = g(x)} ∈ G

and
[f ]G ∈G [g]G if and only if {x ∈ X | f(x) ∈ g(x)} ∈ G.

Here and in the future we will denote by [f ]G the =G equivalence class of f ,
omitting the subscript when there is no chance of confusion.

It turns out that Ult(V,G) is a model of ZFC, yet not necessarily well-
founded, even if G is V -κ-complete for an uncountable cardinal κ. As usual,
an appropriate version of  Loś’s theorem holds. Namely,

Ult(V,G) |= φ([f1], . . . , [fn]) ⇐⇒ {x ∈ X | V |= φ(f1(x), . . . , fn(x))} ∈ G,

2A filter G is V -κ-complete if given λ < κ and a sequence ⟨Aα | α < λ⟩ in V of sets in
G then

⋂
α<λ Aα ∈ G.
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where φ(v1, . . . , vn) is a first order formula in the language {=,∈}.
This ensures that the map jG : ⟨V,∈⟩ → Ult(V,G) given by a 7→ [ca]G is

an elementary embedding, where ca : X → V is the constant function with
value a.

The combinatorial properties of the ideal I (in V ) are related to the
properties of the embedding jG : V → Ult(V,G) in the generic extension
V [G]. For example, I is κ-complete if and only if the maximal condition
[X] forces that the critical point of jG is at least κ.

The generic ultrapower construction will play a prominent role in the
forthcoming §3. We refer the reader to [Jec03, §22] or Foreman’s excellent
handbook chapter [For09] for any notion not considered in this account.

Remark 2.1. Let F ⊆ P(X) be a filter and I := {X \ F | F ∈ F} be
its dual ideal. Since the F-positive sets are exactly the I-positive sets, all
the previous comments remain valid starting with a filter F and taking
P := (F+,⊆). This will be the approach we take through §3. We decided
to phrase the discussion here in the language of ideals just because this is
the approach pursued in reference text, such as [Jec03, For09].

Definition 2.2. Given a filter F ⊆ P(X) and functions f, g : X → V ,
denote

f <F g ⇐⇒ {x ∈ X | f(x) < g(x)} ∈ F .

Similarly, if I ⊆ P(X) is an ideal,

f <I g ⇐⇒ {x ∈ X | f(x) ≥ g(x)} ∈ I.

2.2. Ordinal definability and forcing. A set X is called ordinal definable
if it is definable by a formula of the language of set theory using ordinals as
parameters. More formally, there is φ(x, y⃗) and ⟨α∗, α0, . . . αn⟩ ⊆ Ord such
that

x ∈ X ⇔ Vα∗ |= φ(x, α0, . . . , αn).

The class of ordinal definable sets is denoted by OD. This contains the class
of ordinals Ord and satisfies all the ZFC axioms except for extensionality.
Another caveat is that OD is not transitive. To mitigate this pathology one
looks at a special subclass of OD – the Hereditarily Ordinal Definable sets,
HOD. A set X is Hereditarily Ordinal Definable (or, simply, in HOD) if
X ∈ OD and the transitive closure of {X} is contained in OD. It turns
that HOD is an inner model ; namely, it is a transitive class containing the
ordinals and satisfying all the ZFC axioms.

At many places in this paper we shall be preoccupied with the following
issue. Suppose that P ∈ OD is a forcing poset and G ⊆ P is V -generic – how
does HODV [G] compare to HODV ? Here HODV (resp. HODV [G]) stands for
the class HOD as computed in V (resp. in V [G]). In special circumstances
this comparison can be done; e.g., if P is cone/weakly homogeneous.

Definition 2.3. A poset P is weakly homogeneous if for for all p, q ∈ P there
is an automorphism φ : P → P making φ(p) and q compatible.
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Similarly, P is cone-homogeneous if for all p, q ∈ P there are p∗ ≤ p and
q∗ ≤ q together with an isomorphism φ : P/p∗ → P/q∗.

We used P/p to denote the subposet of P with universe {q ∈ P | q ≤ p}.
It is clear that every weakly homogeneous forcing is cone-homogeneous.

Lemma 2.4 (Folklore). If P ∈ OD is a cone-homogeneous forcing poset

then HODV [G] ⊆ HODV for all V -generic G ⊆ P.

Sometimes we will need to assume (see e.g. §3.1) that HOD encompasses
large cardinals which exist in V . This can be done by forcing “V = HOD”
with McAloon iteration coding V into the continuum function. The said it-
eration preserves large cardinals (see [FHR15, BP23]) and produces a model

V such that V ⊆ HODV Q
for any set-sized forcing Q.

3. Two compactness theorems for HOD

In this section we prove our compactness theorems for HOD (Theorems 3.4
and 3.5). Our results are very much in the spirit of Silver’s classical theorem
that the generalized continuum hypothesis cannot first fail at a singular car-
dinal of uncountable cofinality [Sil75]. The overall idea is to extract some
information about ordinal definability from Silver’s argument, which heavily
uses the technique of generic ultrapowers from §2.1.

Let us begin with the following key result:

Theorem 3.1 (Casey–Goldberg). For any strong limit cardinal λ,

cf(λ+HOD) ∈ {ω, cf(λ), λ+}

Proof. Let κ := λ+HOD and let δ := cf(κ). Let us assume that ω < δ < λ+.
We must show that δ = cf(λ). Let F denote the restriction of the closed

unbounded filter on κ to HOD; i.e., F := Cubκ∩HOD. Since Cubκ is ordinal
definable it is easy to check that F ∈ HOD and that it is a filter in HOD.
We will denote by F+ the F-positive sets, as computed in HOD; namely, the
collection of all A ∈ P(κ)HOD intersecting all members of F.

Claim 3.1.1. In HOD, F is weakly normal in the sense that if S ∈ F+ and
f : S → κ is a regressive function in HOD, there is β < κ such that

{α ∈ S | f(α) ≤ β} ∈ F+.3

Moreover, if γ ∈ Ord, cfV (γ) ̸= δ, S ∈ F+, and f : S → γ is any function
in HOD, then there is some β < γ such that

{α ∈ S | f(α) ≤ β} ∈ F+.

Finally, (F+,⊂) is forcing equivalent in HOD to a poset of size less than
(2δ)+V .

3This notion of weak normality is weaker than the one considered in [Kan76].
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Proof of claim. The bounding properties of F in HOD follow from the cor-
responding properties of Cubκ in V . That is, if S ∈ F+ and f : S → κ
is a regressive function in V , then f is bounded on a stationary set, and
if γ is an ordinal whose cofinality is not δ and f : S → γ is any function
in V , then f is bounded on a stationary set. We leave these as exercises
with the following hints. First, by restricting to a club in κ of ordertype δ,
one can reduce to the more familiar case that κ = δ. Second, to prove the
statement about functions into γ, one can split into cases based on whether
the cofinality of γ is less than δ or greater than δ; in the former case, one
appeals to the δ-completeness of the club filter, and in the latter case, one
uses that functions from δ to γ are bounded everywhere.

Finally, (F+,⊂) is equivalent in HOD to a forcing of size less than (2δ)+V

because its separative quotient Q has cardinality less than (2δ)+V : note
that the underlying set of Q is precisely the set of equivalence classes of
F+ modulo the non-stationary ideal on κ. In V , choose a set T ⊆ F+ such
that for each S ∈ F+, there is exactly one S′ ∈ T such that S △ S′ is
non-stationary (in V ). Then |T|HOD = |Q|HOD, and V |= “|T| ≤ 2δ”. To see
this last inequality, fix a closed unbounded set C ⊆ κ of ordertype δ. Then
⟨S ∩C | S ∈ T⟩ is a sequence of distinct subsets of C from which we deduce
that V |= |T| ≤ |P(C)| = 2δ. □

By forcing over HOD with (F+,⊂), we extend F to a HOD-weakly nor-
mal HOD-ultrafilter G on κ with the property that if γ is an ordinal with
cfV (γ) ̸= δ then every f : κ → γ in HOD is bounded on a set in G. (This
is by the moreover part of the claim together with a density argument.) In
particular, the generic ultrapower map i : HOD → N := Ult(HOD, G) is
continuous at ordinals γ of V -cofinality distinct from δ. Note that N may
not be well-founded so N -ordinals may fail to be ordinals.

Since G is HOD-weakly normal (because so is F, by the previous claim)
it follows that

N |= “[id]G = sup i[κ] < i(κ)”.4

Assume towards a contradiction that

cf(λ) ̸= δ.

By this assumption and our previous comments, N |= “i(λ) = sup i[λ]”
(i.e., i is continuous at λ) as every f : κ → λ is bounded on a set in G.

Since κ := λ+HOD, {ξ < κ | cfHOD(ξ) ≤ λ} ∈ G, and so

N |= “ cf(sup i[κ]) ≤ sup i[λ]”.

Let us next argue that this inequality is strict.

4Since N is not-well founded, statements of the form “ sup(i[κ]) < i(κ)” may not have
the intended meaning when interpreted in V . We are grateful to the anonymous for urging
us to clarify this point.
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Note that HOD[G] |= “ cf(sup i[κ]) = κ”: Indeed, κ remains regular in
HOD[G] because G comes from a forcing equivalent to another of cardinality
less than (2δ)+V < λ.

Because HOD[G] |= “ cf(sup i[λ]) = cf(λ) ≤ λ < κ” it follows that

HOD[G] |= “ cf(sup i[κ]) ̸= cf(sup i[λ])”.

Therefore N satisfies the same; namely,

N |= “ cf(sup i[κ]) ̸= cf(sup i[λ])”.

In particular, we must have

N |= “ cf(sup i[κ]) < sup i[λ]”.

Let C ∈ N be such that

N |= “C is a closed cofinal subset of sup i[κ] of order-type cf(sup i[κ])”.

Recall that i is continuous at ordinals whose V -cofinality is not equal to δ.
In particular, i is continuous at ordinals whose V [G]-cofinality γ lies between
(2δ)+ and λ: by preservation of regular cardinals, such an ordinal has the
same cofinality in V . Thus for any such γ, a familiar argument shows that
i[κ] ∩ C is γ-closed cofinal in sup i[κ]. Hence i−1[C] is cofinal in κ.

Let B := i−1[C], and note that there is some A ∈ HOD unbounded in
κ contained in B because G is generic for a partial order of size less than
(2δ)+V < λ ≤ κ. Since i[A] ⊆ C, letting f : A → κ be the transitive collapse,
i[κ] ⊆ C̄ where C̄ := i(f)[C].

Note that

N |= “ otp(C̄) = otp(C)”.

Fix a V [G]-regular cardinal γ ∈ (δ, λ) such that

N |= “otp(C) < i(γ)”.

Then i[γ] ⊆ C̄ ∩ i(γ), and so

N |= “i[γ] is bounded above by sup(C̄ ∩ i(γ)) < i(γ)”.

In particular, i is discontinuous at γ. However i must be continuous at γ
because cf(γ) ̸= δ. This yields a contradiction showing that our original
assumption that cf(λ) ̸= δ was false. □

The proof of Theorem 3.4 requires another technical result.

Definition 3.2. Let V ⊆ W be two transitive models of ZFC and κ ∈ V be
such that V |= “κ is a regular cardinal”. We say that the pair (V,W ) has the
κ-uniform cover property if for every function f ∈ W with dom(f) ∈ V and
ran(f) ⊆ V there is yet another function F ∈ V with dom(F ) = dom(f),
and for all i ∈ dom(f), f(i) ∈ F (i) and V |= |F (i)| < κ.
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If P ∈ V is a κ-cc forcing poset then standard arguments show that
(V, V [G]) has the κ-uniform cover property. Conversely, a remarkable theo-
rem by Bukovský [Buk73] says that if (V,W ) has the κ-uniform cover prop-
erty then there is a poset P ∈ V that has the κ-cc in V , W |= “|P| ≤ 2κ”
and W is a generic extension of V by P (see [Sch20, Theorem 3.11])

Lemma 3.3. Suppose P ∈ HOD is a κ-cc forcing and G ⊆ P is a V -
generic. Let N be the class of sets that are hereditarily definable in the
structure ⟨V [G], V,G,∈⟩ from ordinal parameters. Then the pair (HOD, N)
has the κ-uniform cover property.

In particular, N is a forcing extension of HOD by a forcing Q ∈ HOD
such that HOD |= “Q is κ-cc” and N |= “|Q| ≤ 2κ”.

Proof. Clearly, HOD ⊆ N . We verify that (HOD, N) has the κ-uniform
cover property. Fix an ordinal λ and a function f : λ → λ that is definable
in the structure ⟨V [G], V,G,∈⟩ from ordinal parameters. Let φ(x0, x1, x2)
be a formula in the language of ⟨V [G], V,G,∈⟩ such that for some ordinal
β, f(ξ) = ζ if and only if ⟨V [G], V,G,∈⟩ satisfies φ(ξ, ζ, β). Then let

F (ξ) = {ζ < λ | ∃p ∈ P (p ⊩P φ(ξ, ζ, β))}.
Note that F is ordinal definable (because so is P) and that f(ξ) ∈ F (ξ).
Since P is κ-cc it also follows that HOD |= |F (ξ)| < κ. □

We are now in a position to prove our first main result:

Theorem 3.4. If κ is a strong limit singular cardinal of uncountable cofi-
nality and {δ < κ | (δ+)HOD = δ+} is stationary then (κ+)HOD = κ+.

Proof. The first attempt at a proof, on which the correct proof will elaborate,
proceeds as follows. Let ι = cf(κ) and fix f : ι → κ an increasing continuous
cofinal function. Let F be the club filter on ι. Then, by assumption,

S := {ξ < ι | f(ξ)+HOD = f(ξ)+} ∈ F+.

By forcing with F+ below S one produces a generic filter G ⊆ F+ extending
the filter F , which is ι-complete and normal in V . In particular,

(†) {ξ < ι | f(ξ)+HOD = f(ξ)+} ∈ G.

Then we take the generic ultrapower jG : V → MG, using only functions
f : ι → V in the ground model V (see §2.1). By V -normality of G,

(††) X ∈ G ⇐⇒ ι ∈ jG(X).

The ultrapower MG has its own version of κ, the unique ordinal κ∗ of MG

that is “κ-like” in the sense that each of its predecessors has cardinality
less than κ, whereas the set of predecessors of κ∗ has cardinality exactly κ.
Indeed, κ∗ = jG(f)(ι), where as above f : ι → κ is any cofinal continuous
function in V . Note that if MG is well-founded, then κ∗ = κ, but we must
deal with the possibility that MG is ill-founded.

Let us begin with an easy (yet useful) observation.
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Claim 3.4.1. In V [G], |(κ+∗ )MG | ≥ κ+.

Proof of claim. In V , fix a sequence of functions ⟨hα⟩α<κ+ ⊆
∏

ξ<ι f(ξ)+

that is increasing in the order of domination modulo the bounded ideal on ι;
namely, for each α < β < κ+, {ξ < ι | hα(ξ) ≥ hβ(ξ)} is bounded in ι. Such
a sequence exists because this reduced product is κ+-directed. Note that in
V [G], ⟨jG(hα)(ι)⟩α<κ+ is an increasing sequence of length κ+ consisting of

predecessors of (κ+∗ )MG . Thus |(κ+∗ )MG | ≥ κ+V . But κ+V = κ+V [G] since G
is added by (F+,⊆), which is a forcing of size 2ι < κ. □

Let H := HODMG . By (†) and (††) above, (κ+∗ )H = (κ+∗ )MG .
Let N denote the inner model of V [G] consisting of all sets hereditarily

ordinal definable in the structure ⟨V [G], V,G,∈⟩. The model N is a κ-cc
forcing extension of HOD by Lemma 3.3, and so (κ+)HOD = (κ+)N .5 If the
structure H were a subclass of N , then we could finally conclude that

(κ+)HOD = (κ+)N ≥ |(κ+∗ )H | = |(κ+∗ )MG | ≥ κ+.

The intuition that H should be a subclass of N comes from our expe-
rience with well-founded ultrapowers. The structure MG is definable over
the structure ⟨V [G], V,G,∈⟩, and so if MG were well-founded, then any el-
ement of H, being ordinal definable in MG, would be ordinal definable in
⟨V [G], V,G,∈⟩; this would yield H ⊆ N . If H is ill-founded, however, then
ordinals of MG are not really ordinals, so it is not clear that ordinal defin-
able elements of MG are ordinal definable in ⟨V [G], V,G,∈⟩. To handle the
possibility that H is not well-founded, we take a different approach.

Instead, we consider the V -ultrafilter U on κ given by U := f∗(G) where

f∗(G) := {A ∈ P(κ)V | f−1[A] ∈ G},

and the ultrapower

H0 := Ult(HOD,U ∩ HOD)

of HOD by U ∩ HOD, using only functions in HOD.
An important observation is that U is ordinal definable in the structure

⟨V [G], V,G,∈⟩. This is because f ′
∗(G) = U for any increasing continuous

cofinal map f ′ : ι → κ. Therefore H0 ⊆ N : The point is that the struc-
ture H0 has for its universe the class of ordinal definable functions from κ
into HOD, which is a subclass of HOD and hence of N ; the (possibly non-
standard) membership and equality predicates of H0 are ordinal definable
over ⟨V [G], V,G,∈⟩ as they are definable from U ∩ HOD, which belongs to
N .

Let κ0 := [id]U . Then κ0 is the unique κ-like ordinal of H0, in the same
sense that κ∗ is the unique κ-like ordinal of MG. The argument from above
shows that |(κ+0 )H0 | = |(κ+)HOD| in V [G]. We also obtain the following:

Claim 3.4.2. N |= κ+ = |(κ+0 )H0 |.

5Here, and hereafter, HOD is in the sense of V .
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Proof of claim. By Lemma 3.3, (κ+)N = (κ+)HOD. Thus, as H0,HOD ⊆ N
and |(κ+0 )H0 | = |(κ+)HOD| in V [G], N |= |(κ+0 )H0 | = |(κ+)HOD| = κ+. □

Next we work towards showing that the previous claim is incompatible
with “(κ+)HOD < κ+”. This will yield the desired contradiction and as a
result will lead to the proof of the theorem.

Let us begin with an auxiliary claim:

Claim 3.4.3. There is a <U -increasing sequence ⟨gα | α < (κ+)HOD⟩ ⊆∏
δ<κ(δ+)V in HOD, such that letting γα := [gα]U , ⟨γα | α < (κ+)HOD⟩ is

an increasing cofinal sequence in (κ+0 )H0.

Proof of claim. We note first that there is such a sequence in N . This is
simply because N satisfies that |(κ+0 )H0 | = (κ+)HOD = κ+, and moreover
by the proof of this fact, N satisfies that cf((κ+0 )H0) = κ+, so in N one can
choose representatives for an increasing cofinal sequence in (κ+0 )H0 , which
is simply a <U -increasing sequence ⟨gα | α < (κ+)HOD⟩ ⊆

∏
δ<κ(δ+)V such

that letting γα := [gα]U , ⟨γα | α < (κ+)HOD⟩ is cofinal in (κ+0 )H0 .
Now we pull the sequence down to HOD. Let P := (F+,⊆) denote our

poset. Since κ is a strong limit cardinal (in V ) and |P|V < κ there is some
V -regular γ < κ such that P is γ-cc. By Lemma 3.3, the pair (HOD, N) has
the γ-uniform cover property, so there is Q ∈ HOD with N |= “|Q| = 2γ”
and N = HOD[F ] where F is a HOD-generic filter for Q. Note that

(2γ)N ≤ (2γ)V [G] < κ,

because κ remains a strong limit cardinal in V [G].
Let ⟨ġα | α < (κ+)HOD⟩ ∈ HOD be a sequence of Q-names for functions

in HOD such that (ġα)F = gα. Since |Q| < κ, there is a condition p ∈ F
deciding the value of ġα for unboundedly many α < κ+HOD; that is, for an
unbounded set S ⊆ (κ+)HOD in HOD, for each α ∈ S, p ⊩P ġα = ǧα. Now
⟨gα | α ∈ S⟩ ∈ HOD is as desired.6 □

Assume towards a contradiction that (κ+)HOD < κ+. Let us define a
factor embedding k : H0 → H by

k([g]U ) := jG(g)(κ∗).

This equals jG(g ◦ f)(ι) and is a well-defined elementary embedding.
The next claim ensures that the ultrafilter D defined below is ordinal

definable in the structure ⟨V [G], V,G,∈⟩:

Claim 3.4.4. k[κ+H0
0 ] has a least upper bound ν < (κ+∗ )H in H.

Proof of claim. By Theorem 3.1, cf(κ+HOD) ≤ ι. Let ρ := cf(κ+HOD) and
A ⊆ κ+HOD be a cofinal set of ordertype ρ. Then ⟨γα⟩α∈A is cofinal in

6We thank the second referee for pointing that the proof of this claim that appeared
in the first draft of this paper was garbled to the point of incorrectness.



12 GOLDBERG AND POVEDA

(κ+0 )H0 , and hence ⟨k(γα)⟩α∈A is cofinal in k[κ+H0
0 ]. But ⟨k(γα)⟩α∈A ∈ MG:

Letting ⟨g∗α⟩α<jG(κ+HOD) = jG(⟨gα⟩α<κ+HOD),

⟨k(γα)⟩α∈A = ⟨g∗α(κ∗)⟩α∈jG[A]

with jG[A] ∈ MG. (As crit(jG) = ι, A ∈ V , and |A| ≤ ι.) Since ⟨k(γα)⟩α∈A
is a set of ordinals in MG, it has a least upper bound ν, and since ⟨k(γα)⟩α∈A
is cofinal in k[κ+H0

0 ], ν is the least upper bound of k[κ+H0
0 ].

Note that ν < (κ+∗ )H : First, by our comments after Claim 3.4.1, (κ+∗ )H =
(κ+∗ )MG , so (κ+∗ )H is regular in MG. Second, the previous argument shows
that cfMG(ν) ≤ ι, which is less than κ. Therefore, ν < (κ+∗ )H . □

Let D be the H0-ultrafilter on (κ+0 )H0 derived from k using ν; namely,

D = {S ∈ PH0((κ+0 )H0) | ν ∈ k(S)}.
Let H1 := Ult(H0,D), again using only functions in H0. Let i : H0 → H1

be the ultrapower embedding, and let ν̄ := [id]D. Then,

ν̄ = sup i[κ+H0
0 ] < i(κ+H0

0 ).

Note that D is ordinal definable in the structure ⟨V [G], V,G,∈⟩, and hence
H1 ⊆ N , by the same argument as for H0. Since the ultrapower embedding
i : H0 → H1 is definable over ⟨V [G], V,G,∈⟩ from ordinal parameters,

i ↾ κ+H0
0 ∈ N.

The next claim yields the desired contradiction with Claim 3.4.2:

Claim 3.4.5. N |= |(κ+0 )H0 | ≤ κ.

Proof of claim. Since i[κ+H0
0 ] ⊆ ν̄ it follows that |κ+H0

0 |N ≤ |ν̄|N . Also,

ν̄ < i(κ+H0
0 ) = i(κ0)

+H1 . Since H1 ⊆ N we have the following inequalities:

|κ+H0
0 |N ≤ |ν̄|N ≤ |i(κ0)|N = κ.

The latter equality being true in that i(κ0) is κ-like, as it embeds into κ∗. □

Since we get a contradiction our initial assumption that “(κ+)HOD < κ+”
was false, and this proves the theorem. □

Let us now prove our second compactness theorem. This uses a slightly
different technique (due to Casey–Goldberg) to prove the theorem for an
arbitrary singular cardinal of uncountable cofinality; a direct adaptation of
the argument from Theorem 3.4 would only prove the result for strong limit
cardinals.

Theorem 3.5. If κ is a singular cardinal of uncountable cofinality and
{δ < κ | cfHOD(δ) < δ} is stationary in κ, then cfHOD(κ) < κ.

Proof. Assume towards a contradiction that κ is a regular cardinal in HOD.
For the rest of the proof F denotes the closed unbounded filter on κ.

We claim that in HOD, the filter F̄ = F ∩ HOD is weakly normal in
the sense that every regressive function f : A → κ in HOD defined on a
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set A ∈ F̄ admits some γ < κ such that {α ∈ A | f(α) < γ} ∈ F̄ .7 Fix
f ∈ HOD, and assume towards a contradiction that no such γ exists.

By Fodor’s Lemma, it is not hard to see that any regressive function
defined on a stationary subset of κ is bounded on a stationary set. (This is
the argument used in Claim 3.1.1.) Therefore let γ0 be least such that the
function f : A → κ is bounded by γ0 on a stationary subset of A. By our
assumption, the set A1 of ordinals α ∈ A such that f(α) ≥ γ0 is stationary
as well. Let γ1 be least such that f ↾A1 is bounded below γ1 on a stationary
set. Continuing this way, we can produce a continuous sequence ⟨γi | i < κ⟩
such that for all i < δ,

{α ∈ A | f(α) ∈ [γi, γi+1)}
is stationary. We use our assumption that κ is regular in HOD to ensure
that the process can be continued at limit ordinals i < κ. (Note that the
entire construction is internal to HOD.) But since cf(κ) < κ, there cannot
be κ-many disjoint stationary subsets of κ.

A similar argument shows that if γ < κ is regular in HOD, greater than
cf(κ), and of a different V -cofinality from κ, then F̄ is γ-indecomposable in
HOD in the following sense: Working in HOD, any function f : B → γ with
B ∈ F̄ is bounded below γ on a set in F̄ .

Until further notice let us work in HOD and denote

S := {δ < κ | cf(δ)HOD < δ}.
Since S ∈ F̄+, there is an ultrafilter U extending

F̄ ∪ {S}.
Since F̄ is weakly normal, U is weakly normal, and since S ∈ U , U con-
centrates on singular cardinals. Therefore by [Ket72, Theorem 1.3], U is
(ν, κ)-regular for some ν < κ.8

Claim 3.5.1. U is γ-decomposable for every regular cardinal in (ν, κ).

Proof of claim. Let ⟨Aα⟩α<κ be a witness for “U is (ν, κ)-regular”. Namely,
this is a collection of U -measure one sets such that

⋂
α∈I Aα = ∅ for all I ⊆ κ

with |I| = ν. Let γ ∈ (ν, κ) be regular, and define a function f : κ → γ as
f(α) := sup{β < κ | α ∈ Aβ}. The fact that ⟨Aα⟩α<κ witnesses (κ, ν)-
regularity ensures that f is well-defined. Note that f cannot be bounded
below γ on a set in U : Otherwise, A := {α < κ | f(α) < β} ∈ U , for some
β < γ, but by definition A ∩Aβ = ∅. Therefore, U is γ-decomposable. □

7Note that this is a stronger form of normality than the one proved in Claim 3.1.1.
8Here one cannot directly use Ketonen’s result since U is not countably complete.

Ketonen’s result refers to the “first function” of an ultrafilter, which in the case of a
weakly normal ultrafilter is the identity. As Ketonen remarks after the proof of Theorem
1.3, the result only requires the existence of a first function, not the countable completeness
of U . Since our ultrafilter does have a first function, namely the identity, the required
result is true.
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Now we return to V . Since F̄ is γ-indecomposable in HOD for all ordinals
γ that are regular in HOD, greater than cf(κ), and of different V -cofinality
from κ, U is γ-indecomposable for such ordinals.

It follows that for all ordinals γ ∈ (max{ν, cf(κ)}, κ), if γ is regular
in HOD, then cf(γ) = cf(κ); otherwise the previous paragraph implies
U is γ-indecomposable while the paragraph preceding it implies U is γ-
decomposable. But κ is a limit of V -regular cardinals, and these are cer-
tainly regular in HOD and do not have the same cofinality as κ. This is a
contradiction. □

3.1. Optimality. In this section we discuss the optimality of Theorems 3.4
and 3.5. Some of our arguments require rather technical Prikry-type forc-
ings. Instead of elaborating on their precise definitions (which are fairly
long) we give appropriate references. Let us begin with Theorem 3.4. The
next shows that the cofinality assumption is necessary in Theorem 3.4:

Proposition 3.6. Assume that κ is a κ+-supercompact cardinal. Then,
there is a generic extension where

(1) κ is a strong limit cardinal with cf(κ) = ω,
(2) δ+HOD = δ+ for all δ < κ,
(3) and (κ+HOD) < κ+.

Proof. By forcing with McAloon iteration we may assume that “V = HOD”
holds (see p.6). Let U be a κ-complete, normal and fine ultrafilter over
Pκ(κ+). Let us force with the Supercompact Prikry forcing with respect
to U ([Git10, §1]). This forcing is easily shown to be cone-homogeneous so

that HODV [G] = V holds for all V -generic G ⊆ P. This forcing does not
introduce bounded subsets of κ so, in V [G], V [G]κ = Vκ. Also, κ becomes a
strong limit cardinal with cf(κ) = ω. This gives (1) and (2) above. Finally,

in V [G], (κ+)V is collapsed to κ, hence (κ+)HODV [G]
= (κ+)V < κ+. □

The hypothesis “{δ < κ | δ+HOD = δ+} is stationary” is also necessary:

Theorem 3.7. Suppose that κ is a κ+2-supercompact cardinal such that

2κ
+n

= κn+1 for n < ω. Then, for each regular uncountable cardinal µ < κ
there is a generic extension where:

(1) κ is a strong limit cardinal with cofinality µ.
(2) κ+HOD < κ+.
(3) There is a club C ⊆ κ with otp(C) = µ such that

δ+HOD = δ+ for all cardinals δ < κ not in acc(C).

Proof. By preliminarily forcing with McAloon’s iteration we may assume

that V ⊆ HODV Q
for any set-sized forcing Q. If this iteration is started at

a sufficiently large regular cardinal our hypothesis on κ are maintained.
Suppose that j : V → M is a κ+2-supercompact embedding. Let µ < κ

be a regular cardinal and let u be the (κ, κ+)-measure sequence of length
µ derived from j. Namely, u = ⟨uα | α < µ⟩ where u0 := j“κ+ and
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uα := {X ⊆ Vκ | u ↾ α ∈ j(X)} for α > 0. Notice that M contains every
(κ, κ+)-measure sequence of length less than µ so u above indeed exists. In
addition, by the argument in [CFG15, Lemma 3.2], u belongs to U sup

∞ .9

Let Rsup
u be the supercompact Radin forcing defined from u [CFG15]. Let

G ⊆ Rsup
u a V -generic filter. Combining [CFG15, Corollary 4.2] with our

forcing preparation

V ⊆ HODV [G] ⊆ V [Gϕ],

where Gϕ is a V -generic for a plain Radin forcing Ru – hence, for a cardinal-
preserving poset. In particular, the following inequalities hold:

(κ+)V ≤ (κ+)HODV [G]

≤ (κ+)V [Gϕ] = (κ+)V < (κ+)V [G].

The above yields item (2) of the theorem.

Let ⟨wα | α < µ⟩ be an injective enumeration of {w | w appears in p ∈ G}.
Denote κwα

:= min(Ord \wα(0)) and λwα
:= otp(wα(0)). The increasing

enumeration of {κwα | α < µ} yields a club C ⊆ κ of order-type µ and
by forcing below an appropriate condition µ remains regular in V [G]. In
addition, standard arguments show that κ remains strong limit in V [G] (see
[CFG15, Lemma 3.10(6)]). These two observations combined yield item
(1) of the theorem. Finally, [CFG15, Lemma 3.10(8)] shows that the only
V -cardinals ≤κ that survive after passing to V [G] are those outside⋃

α∈Lim∩µ(κwα , λwα ].

Thus, for every V [G]-cardinal δ /∈ acc(C) we have that (δ+)V does not

belong to the above union and thus (δ+)V = (δ+)V [G]. By our previous

observations this yields (δ+)HODV [G]
= (δ+)V = (δ+)V [G], as claimed. □

Remark 3.8. The exact consistency strength of the configuration described
above is unclear to us. Since the configuration violates the weak covering
theorem for K [JS13, MSS97], one obtains the lower bound of a Woodin
cardinal, but presumably one can obtain a stronger lower bound.

Theorem 3.9. Suppose that κ is Mahlo with {δ < κ | o(δ) = τ} stationary
for all 0 < τ < κ. Then, there is a cardinal-preserving generic extension
V [G ∗ C] where the following properties hold:

(1) κ remains inaccessible, hence V [G ∗ C]κ |= ZFC;
(2) For each regular ω1 ≤ λ < κ there is a stationary set Sλ ⊆ Eκ

λ
consisting of strong limit cardinals θ such that:
(a) θ is inaccessible in HOD;
(b) {δ < θ | cf(δ)HOD < δ} is unbounded in θ.

9Our assumption that “2κ
+n

= κ+n+1 holds for all n < ω” is used precisely at this
stage. A close inspection of the proof of [CFG15, Lemma 3.2] indicates that less instances
of the GCH suffice to run the argument. However, we opted for this slightly stronger
assumption for the sake of a more neat presentation.
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Proof. Let U = ⟨U(α, τ) | α < κ, τ < oU (α)⟩ be a coherent sequence of
normal measures. Using U one inductively defines an iteration of Prikry-
type forcings with non-stationary support P = ⟨Pα; Q̇α | α < κ⟩ such that:

(1) Qα is non-trivial if and only if o(α) > 0;
(2) For non-trivial stages α < κ, Qα has the following properties:

(a) ⟨Qα,≤α,≤∗
α⟩ is an α+-cc Prikry-type forcing and α-closed with

respect to its pure-extension order ≤∗
α.

(b) Qα adds a club cα ⊆ α of order-type ωo(α) which is a Prikry/Magidor
sequence for the sequence ⟨U(α, τ) | τ < oU (α)⟩.

The forcing (in the above form) is due to Ben-Neria and Unger [BNU17],
which in turn is inspired by a classical construction due to Gitik [Git86].

Let G a P-generic filter. Following [BNU17] we conveniently denote:

∆τ := {δ < κ | δ ∈ Inac ∨ o(δ) = τ} and ∆ :=
⋃

τ<κ ∆τ .
10

Claim 3.9.1. ∆ is a fat stationary subset of κ in V [G].

Proof of claim. By [BNU17, Corollary 3.7], ∆ is stationary in V [G]. Let
η < κ and E ⊆ κ be a club in V [G]. We have to show that E ∩ ∆ contains
a closed set of order-type η. Working in V , let τ ∈ (0, κ) big enough so
that η < ωτ . By [BNU17, Corollary 3.7] there is a V -club Ē ⊆ E. Let
δ ∈ acc(Ē) ∩ ∆τ . (This exists because ∆τ is V -stationary.) The iteration
P introduces at stage δ a club cδ ⊆ δ with otp(cδ) = ωτ . Moreover, cδ is a
Prikry/Magidor club so it is eventually contained in every V -club on δ (e.g.,
in Ē ∩ δ) and it eventually consists of V -inaccessible cardinals. Therefore,

cδ \ χ ⊆ Ē ∩ ∆0 ⊆ E ∩ ∆

for some χ < δ. It suffices to take an initial segment of cδ \χ with order-type
η to conclude that E ∩ ∆ contains a closed set with that order-type. □

Let us force over V [G] with C(∆) the poset adding a (generic) club subset
C ⊆ ∆ (see [AS83]). Since ∆ is fat, results of Abraham and Shelah [AS83]
guarantee that C(∆) is κ-distributive and thus κ remains inaccessible in
V [G ∗ C]. Thanks to the analysis made by Ben-Neria and Unger (specially,

[BNU17, Theorem 4.6]) we know that P ∗ Ċ(∆) is weakly homogeneous. So,

a fortiori, let us asssume that “V ⊆ HODV Q
” holds for all set-sized poset

Q ∈ V (by preliminarily forcing with McAloon’s iteration). In this case we

have HODV [G∗C] = V = HODV holds in V [G ∗ C].

Claim 3.9.2. Item (1) holds; namely, κ remains inaccessible in V [G ∗ C].

Proof of claim. Since C(∆) is κ-distributive in V [G] it suffices to argue that
the above holds in V [G]: κ remains strong limit in V [G] by a standard
factoring argument; κ remains regular by virtue of [BNU17, Corollary 3.7],
which says that every V [G]-club on κ contains a V -club. □

10For τ > 0 the requirement o(δ) = τ subsumes ‘δ ∈ Inac”.
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Let ω1 ≤ λ < κ be a regular cardinal and set

Sλ := acc(C) ∩ (Eκ
λ)V [G].

Fix θ ∈ Sλ. Since θ ∈ Sλ ⊆ ∆ this is V -inaccessible, hence HODV [G∗C]-
inaccessible, this disposes with (2)(a) above. Standard factoring arguments
with P also show that θ remains strong limit in V [G] and thus in V [G ∗ C]

as well. Finally, {δ < θ | cf(δ)HODV [G∗C]
< δ} = {δ < θ | cf(δ)V < δ} is

unbounded in θ because this latter is a V -inaccessible. □

3.2. On ω-club amenability. The first author showed that many of the
known results on HOD, for example the HOD dichotomy theorem, can ac-
tually proved for an arbitrary inner model that is ω-club amenable [Gol23].

A set C ⊆ δ is an ω-club in δ (for cf(δ) ≥ ω1) if it is unbounded (in δ) and
whenever S is a countable subset of C, sup(S) ∈ C. The ω-club filter on δ,
denoted by Cδ, is the collection of all subsets of δ that contain an ω-club.

Definition 3.10. An inner model M is ω-club amenable if Cδ ∩M ∈ M for
all ordinals δ with uncountable cofinality.

The truth is that very little is known about HOD that does not already
hold of any ω-club amenable model, so it is natural to seek properties that
are more specific to HOD. In this section, we show that Theorem 3.4 does
not generalize to an arbitrary ω-club amenable model.

Let C⃗ denote the proper class {(δ, S) | cf(δ) ≥ ω1, S ∈ Cδ}. If one builds

the constructible universe relative to the sequence C⃗, then one obtains an
ω-club amenable model. More generally:

Lemma 3.11. For any class A, M = L[A, C⃗] is ω-club amenable. □

To construct ω-club amenable models that do not satisfy the conclusion
of Theorem 3.4 we need a fairly mild large cardinal hypothesis. In terms of
consistency strength, the hypothesis is a bit weaker than the assumption of
a measurable cardinal of Mitchell order 2, or equivalently the existence of
a normal ultrafilter that concentrates on measurable cardinals. The specific
hypothesis we use is the notion of the sword of a set, which is a generalization
of the sharp of a set. If X is a set, then X‡ will denote X-sword, which is
roughly the minimal model of set theory M such that X∩M ∈ M and there
is some κ > rank(X) that carries a normal ultrafilter of Mitchell order 1.
The precise definition of X‡ involves a bit of inner model theory, all of which
can be found in Zeman’s textbook [Zem11] except that we must relativize
the theory developed there to an arbitrary predicate.

If X is a family of subsets of an ordinal λ, an X-oracle mouse is a structure
(M,E) satisfying the usual mousehood conditions relative to a predicate for
X. Thus E is a fine sequence of partial extenders with critical point above
λ and M = Jα[X,E] is iterable.11 This notion is slightly different from the

11Note that the definition of an X-oracle mouse technically depends on the ordinal λ.
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usual concept of an X-mouse because we do not demand that X belongs to
M , only that X ∩M ∈ M . The analogy is: X-oracle mice are to X-mice as
L[X] is to L(X).

We will only discuss mice at the level of a measurable cardinal of Mitchell
order 2, so all the extenders on E are normal measures (of Mitchell order at
most 1) and iterability simply asserts that any iterated ultrapower formed
using these measures is well-founded. In fact, the only X-oracle mice we
consider are s-mice in the sense of Zeman [Zem11, Page 199], which means
that they are active and their last extender is the unique measure of Mitchell
order 1. We will call such a structure an X-oracle s-mouse.

If X belongs to an inner model containing a measurable cardinal of
Mitchell order 2 above the rank of X, then an X-oracle s-mouse exists,
and a Skolem hull argument yields one that is in addition sound:

Lemma 3.12. Suppose X is a family of subsets of the ordinal λ and there
is an X-oracle s-mouse. Then there is an X-oracle s-mouse M such that
M = HullMΣ1

(λ). □

In fact, by a comparison argument, one can show that there is a unique
such X-mouse.

Definition 3.13. If X is a family of subsets of the ordinal λ, the X-oracle
mouse X-sword, denoted by X‡, is the unique X-oracle s-mouse M such
that M = HullMΣ1

(λ).

Although X-oracle mice seem like a natural generalization of relativized
constructibility, the detailed fine structure of these objects does not seem to
have been considered in the literature. We are confident that, for example,
the comparison lemma can be generalized to this context, but we have not
checked this. Moreover, thanks to a suggestion of one of the referees, the
proofs below do not require any deep fine-structural analysis: we do not
really make use of the comparison theorem for X-oracle mice, but rather we
will just define one particular iteration of one particular mouse.

The only place the comparison lemma appears to show up is in Definition
3.13 above: the typical proof of the uniqueness of X‡ requires a comparison
argument. However, we do not really need this uniqueness: instead of using
X‡, we could run the proofs of Lemmas 3.14 and 3.16 with any X-oracle
s-mouse M such that M = HullMΣ1

(α), and we would still obtain the desired

conclusions. In spite of this, we will use the notation X‡ for convenience.

The following lemmas, which are due to one of the anonymous referees,
vastly simplify the proof of Lemma 3.16 below.

Lemma 3.14. Suppose X is a family of subsets of an ordinal λ. Then
cf(o(X‡)) = ω.

Proof. Let θ > λ be a regular cardinal, and let N be a countable transitive
set admitting an elementary embedding π : N → H(θ) with (X,λ) ∈ ran(π).
Let X̄ = π−1(X), and note that X̄‡ is a countable model and π restricts to
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an elementary embedding i : X̄‡ → X‡. Let Ū = F X̄‡
be the top measure of

X̄‡, let ν = sup i[o(X̄‡)], and let M = (X‡|ν, U) where U =
⋃

A∈X̄‡ i(Ū ∩A).

Then i : X̄‡ → (X‡|ν, U) is Σ1-elementary and (X‡|ν, U) ⪯Σ1 X‡, so since

X‡ = HullX
‡

Σ1
(λ) where λ < ν, we have M = X‡. It follows that cf(o(X‡)) =

cf(o(M)) = cf(o(X̄‡)) = ω. □

Lemma 3.15. Suppose X is a family of subsets of an ordinal λ and M is
an X-oracle s-mouse. If M = HullMΣ1

(α) where α ≥ λ, and δ > α is regular
in M , then cf(δ) = cf(o(M)).

Proof. Let U be the top measure of M , and for ξ < o(M), let Mξ = (M |ξ, U∩
M |ξ). Then for any Σ1-formula φ(x) and any a ∈ M , M ⊨ φ(a) if and only
if Mξ ⊨ φ(a) for all sufficiently large ξ. It follows that M = HullMΣ1

(α) =⋃
ξ<o(M) Hull

Mξ

Σ1
(α). Note that for all ξ < o(M), Hull

Mξ

Σ1
(α) ∈ M and M ⊨

|Hull
Mξ

Σ1
(α)| ≤ α.

Now suppose δ > α is regular in M . For ξ < o(M), let

βξ = sup(δ ∩ Hull
Mξ

Σ1
(α))

Then βξ < δ since δ is regular in M and M ⊨ |Hull
Mξ

Σ1
(α)| ≤ α < δ.

Since ⟨βξ⟩ξ<o(M) is a weakly increasing cofinal sequence in δ, it follows that
cf(δ) = cf(o(M)). □

Lemma 3.16. Assume that for all X, X‡ exists. Then for any cardinal λ

and any set A ⊆ λ, L[A, C⃗] does not correctly compute λ+.

Proof. Fix a set A ⊆ λ. Using a pairing function on λ, it is not hard to
construct a family X of subsets of λ such that for any class E, L[X,E] =
L[A,C ↾ (λ + 1), E]. In particular,

L[X, C⃗ ↾ (λ,∞)] = L[A, C⃗]

where (λ,∞) = {ξ ∈ Ord : ξ > λ}.

Let M = X‡. We claim that L[A, C⃗] is contained in a proper initial

segment P of an iterate N of M . (In fact, we will have L[A, C⃗] = P and
P = N ↾Ord where N is a non-dropping iterate of M that is not set-like.) By
Lemmas 3.15 and 3.14, λ+P = λ+M has countable cofinality, and it follows

that λ+L[A,C⃗] ≤ λ+P < λ+.
The idea is to iterate M to a model N with the following property. For

each ordinal δ > λ, there is a total measure on δ on the sequence of N if and
only if δ has uncountable cofinality in V ; moreover, in this case the least
total measure on δ on the sequence of N is equal to Cδ ∩N .

The iteration is defined by selecting at each stage the first total measure
on the sequence of the current iterate that lies on an ordinal of countable
cofinality. More formally, we define an iterated ultrapower

⟨(Mα, Uα) | α ∈ Ord⟩
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of M by setting Uα equal to the first total measure W on the Mα-sequence
that lies on an ordinal κα of countable cofinality in V ; if there is no such
measure W , set Uα equal to the top measure of Mα.

Let N be the direct limit of the linearly directed system ⟨(Mα, Uα) |
α ∈ Ord⟩, and let P = N |Ord be the set-like part of N . It is clear that if
for some ordinal δ, there is a total measure W on δ on the sequence of P ,
then δ has uncountable cofinality.

We claim that if δ > λ is a regular cardinal of P that has uncountable
cofinality in V , then there is a total measure on δ on the sequence of P and
the least such measure is equal to Cδ ∩ P . We prove the claim by showing
by induction on α ∈ Ord that if δ > λ is a regular cardinal of Mα that
has uncountable cofinality in V , then there is a total measure on δ on the
sequence of Mα and the least such measure equal to Cδ ∩Mα.

For the case that α = 0, note that by the definition of M = X‡, we have
M = HullMΣ1

(λ), and so by the referee’s Lemmas 3.14 and 3.15, if δ > λ is a
regular cardinal of M , then δ has countable cofinality in V . Thus the base
case holds vacuously.

Now assume the induction hypothesis holds for Mα, and we claim it is true
for Mα+1. Suppose therefore that δ > λ is a regular cardinal of Mα+1. Note
that Mα|κα = Mα+1|κα, so for ordinals δ in the open interval (λ, κα), then
the induction hypothesis for Mα easily implies the induction hypothesis for
Mα+1. A slightly more complicated variation of this argument establishes
the induction hypothesis for Mα+1 in the case that δ = κα: by the definition
of the iteration, either κα has countable cofinality, in which case we have
nothing to show, or else Uα is the top measure of Mα, in which case the fact
that Mα and Mα+1 have the same least measure on κα is enough to verify
the induction hypothesis for δ = κα in Mα+1.

To finish the successor case, we show that if δ > κα is regular in Mα+1,
then cf(δ) = ω, so the induction hypothesis holds vacuously in the interval
(κα, o(Mα+1)). Since Mα+1 is generated by the critical points of the iteration

along with λ, Mα+1 = Hull
Mα+1

Σ1
(κα + 1). Since there is a cofinal embedding

from M to Mα+1, Lemma 3.14 implies that cf(o(Mα+1)) = ω. Therefore we
can apply Lemma 3.15 to obtain that cf(δ) = ω, as desired.

Finally, we consider the limit case. Suppose α is an infinite limit ordinal
and δ > λ is a regular cardinal of Mα. Assume the induction hypothesis is
true for all β < α. For each β < α, let δβ = j−1

β,α[δ] where jβ,α : Mβ → Mα is

the iteration map. Then for some β0 < α, for all β ∈ (β0, α), jβ,α(δβ) = δ.
First assume that for some β1 > β0, for all β > β1, κβ ̸= δβ. Then jβ,α is

continuous at δβ for all β ∈ (β1, α). Using this, it is easy to propagate the
induction hypothesis for Mβ with respect to δβ, where β ∈ (β1, α), to Mα,
with respect to δ.

Now assume instead that κβ = δβ for cofinally many β < α. Then
Since the critical points in the iteration are increasing, it easily follows that
C0 = {β < α : κβ = δβ} is a closed unbounded subset of α, and hence
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C = {κβ : β ∈ C0} is a closed unbounded subset of δ. If cf(δ) = ω, there is
nothing to prove, so assume cf(δ) is uncountable. For A ∈ P (δ) ∩Mα, note
that A belongs to the least measure W on δ if and only if C \ η ⊆ A for
some η < δ. It now follows that W = Cδ ∩Mα, as desired.

This finishes the induction, proving that for all α ∈ Ord, if δ > λ is a
regular cardinal of Mα that has uncountable cofinality in V , then there is
a total measure on δ on the sequence of Mα, and the least such measure
is equal to Cδ ∩Mα. But for all γ ∈ Ord, for all sufficiently large ordinals
α, P |γ = Mα|γ. It follows that if δ > λ is a regular cardinal of P that
has uncountable cofinality in V , then there is a total measure on δ on the
sequence of P , and the least such measure is equal to Cδ ∩ P . (In fact, this
measure is unique.)

From this, it follows that L[A, C⃗]] is an inner model of P , since in fact

L[A, C⃗] = L[X, C⃗ ↾ (λ,∞)] is definable over P using the predicates X ∩ P
and the extender sequence of P . □

Putting everything together we arrive at the following corollary:

Corollary 3.17. Suppose that for every set X, X‡ exists. Then for every
cardinal λ, there is an ω-club inner model M that is correct about cardinals
and cofinalities below λ while (λ+)M < λ+.

Proof. Fix a sequence ⟨aα⟩α<λ such that for every limit ordinal α < λ, aα
is a cofinal subset of α ordertype cf(α). Let A ⊆ λ × λ be the set {(α, β) |
β ∈ aα}. Using the Gödel pairing function, A can be viewed as a subset of

λ, and by Lemma 3.16, the inner model M = L[A, C⃗] is an ω-club amenable
model such that λ+M < λ+. □

4. Open questions and remarks

The following is a configuration not handled by our arguments:

Question 1. Suppose that κ is a strong limit singular cardinal of uncount-
able cofinality and that {δ < κ | (δ++)HOD ≥ δ+} is stationary. Is it true
that (κ++)HOD ≥ κ+?

We do not know either if other HOD-related properties behave in a
compact-like way. For instance, the following is open.

Question 2. Suppose that κ is a singular strong limit cardinal with uncount-
able cofinality and that {δ < κ | δ+ is not ω-strongly measurable in HOD}
is stationary. Is it true that κ+ is not ω-strongly measurable in HOD?

There is another intriguing question connecting Woodin’s HOD Conjec-
ture with Theorem 3.4. Assuming the existence of strong enough large



22 GOLDBERG AND POVEDA

cardinals, in [Pov23] it was proved that a cardinal κ can consistently be <λ-
extendible yet (λ+)HODx < λ+ for a strong limit cardinal λ with cf(λ) = ω
and x ⊆ λ. In simple terms, the HOD Conjecture can fail locally.12

A natural speculation is whether this failure can take place at a strong
limit singular of cofinality ≥ω1. Namely,

Question 3. Consider the following configuration:

(1) κ is <λ-extendible.
(2) λ strong limit with cf(λ) ≥ ω1.
(3) (λ+)HOD < λ+

Is it consistent with ZFC?

Granting the HOD Conjecture, Theorem 3.4 suggests that the answer
to Question 3 is negative. For suppose Clause (3) above holds. Then, by
Theorem 3.4, the set {δ < λ | (δ+)HOD < δ+} contains a club. In particular,
the degree of extendibility of κ overlaps a singular cardinal δ < λ witnessing
(δ+)HOD < δ+. This is on the verge of refuting the HOD Conjecture. Note,
however, that it does not outright preclude it. The reason being that Vλ

may no satisfy ZF. A positive answer would point out yet another difference
between singular cardinals of countable and uncountable cofinality.
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