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Abstract. Under large cardinal hypotheses beyond the Kunen inconsistency

— hypotheses so strong as to contradict the Axiom of Choice — we solve
several variants of the generalized continuum problem and identify structural

features of the levels Vα of the cumulative hierarchy of sets that are eventually

periodic, alternating according to the parity of the ordinal α. For example, if
there is an elementary embedding from the universe of sets to itself, then for

sufficiently large ordinals α, the supremum of the lengths of all wellfounded

relations on Vα is a strong limit cardinal if and only if α is odd.

1. Introduction

Cantor’s continuum problem poses a fundamental set-theoretic question: how
many real numbers exist? Equivalently, what is the cardinality of the set of all
subsets of the natural numbers? The generalized continuum problem extends this
inquiry to arbitrary infinite sets, asking how the cardinality of a set X compares
to that of its powerset P (X). A special case, which will be the main focus of
this paper, is the question of the cardinality of the infinite levels of the cumulative
hierarchy, the sequence of sets defined by iterating the powerset operation along
the class of ordinal numbers, starting with V0 = ∅, and letting Vα+1 = P (Vα), and
Vλ =

⋃
β<λ Vβ when λ is a limit ordinal.

The generalized continuum hypothesis suggests a possible answer to the contin-
uum problem: the cardinality of the powerset of X is as small as possible; it is the
least cardinal greater than |X|. Equivalently, for all ordinals α, the cardinality of
the α-th infinite level of the cumulative hierarchy (namely, Vω+α) is precisely the
α-th infinite cardinal number ℵα.

These questions cannot be resolved within any accepted mathematical frame-
work, such as the ZFC axioms. In other words, the (generalized) continuum hy-
pothesis can be neither proved nor refuted. This limitation highlights a compelling
issue: our foundational intuitions about sets fail to clarify the relationships among
the key concepts of set theory: arbitrary sets, power sets, and cardinality. This
unresolved issue motivates a search for new axioms that might provide answers to
these questions or at least suggest a path forward.

The program for new axioms has succeeded in identifying a hierarchy of set the-
oretic hypotheses that far surpass the strength of the traditional axioms and settle
many instances of the generalized continuum problem (though not the continuum
problem itself). These large cardinal hypotheses postulate the existence of very
large sets (or equivalently, very large cardinal numbers), so large that their exis-
tence is unprovable from the ZFC axioms, or indeed from any weaker large cardinal
hypothesis.
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A theorem of Solovay establishes that assuming the existence of a strongly com-
pact cardinal κ, a relatively strong large cardinal hypothesis, the generalized con-
tinuum hypothesis holds for Vλ whenever λ > κ is the limit of fewer than |Vλ|
smaller ordinals. Large cardinal hypotheses as currently conceived yield very little
information about the sizes of the other levels of the cumulative hierarchy.

The large cardinal hypotheses we will be concerned with here go far beyond the
current conception, hypotheses so strong as to contradict the Axiom of Choice.
The earliest of these hypotheses was introduced by Reinhardt in the late 1960s,
who postulated the existence of a nontrivial elementary embedding from the uni-
verse of sets to itself. Not long after, Kunen refuted Reinhardt’s hypothesis using
the Axiom of Choice. His paper raises the question of whether the principle can
be refuted without appeal to the Axiom of Choice, a question which has gained
prominence in recent years, with most evidence pointing towards the consistency of
Reinhardt’s hypothesis in the absence of the Axiom of Choice, raising the possibility
that the large cardinal hierarchy extends past Kunen’s bound, beyond Reinhardt’s
hypothesis, with no end in sight.

This paper studies the ramifications of Reinhardt’s hypothesis for the generalized
continuum problem. We do not use the Axiom of Choice, of course, which compli-
cates matters considerably. First of all, in the choiceless context, the generalized
continuum problem can be made precise in several inequivalent ways. Here, we will
focus on the following problem. For each ordinal α, let θα denote the supremum of
all ordinals η such that there is a surjective function from some element of Vα to η.
So θω = ω and θω+1 = ω1. Assuming the Axiom of Choice, for all ordinals α,

θα =

{
|Vα−1|+ if α is a successor ordinal

|Vα| if α is a limit ordinal

The generalized continuum hypothesis is therefore equivalent, in the context of
ZFC, to the statement that θω+α = ℵα for all ordinals α.

In the context of Reinhardt’s hypothesis, we will place nontrivial restrictions
on the behavior of the θα function for all sufficiently large ordinals α, yielding an
analysis of the type of level of the cumulative hierarchy that prior to this work had
been impermeable by any large cardinal hypothesis.

A second complication introduced by dropping the Axiom of Choice is that most
of the theory of large cardinals — indeed, most of the theory of uncountable sets —
relies heavily on this axiom. It would be one thing if one could retain some weaker
choice principle, and perhaps this is possible, but it is unclear at this point what a
reasonable candidate is. We are therefore left to wander the desert that is bare ZF
set theory, a theory known mainly for all that it cannot prove.

What saves us is that we can prove certain consequences of the Axiom of Choice
from the very large cardinal hypotheses that refute it. This idea traces back to
Woodin [1], who used supercompact cardinals for a similar purpose. Woodin’s
ideas were developed by Cutolo [2], who used them to prove some structural conse-
quences of hypotheses much stronger than Reinhardt’s, and later Usuba [3, 4], who
introduced the notion of a Lowenheim-Skolem cardinal, which is essentially a weak
choice principle abstracted from Woodin’s applications of supercompact cardinals,
and Schlutzenberg [5], who analyzed large cardinal hypotheses beyond choice in the
context of Lowenheim-Skolem cardinals. The author [6] was the first to bring these
ideas to bear on Reinhardt’s hypothesis itself, assuming neither additional large
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cardinal hypotheses as in [7, 2] nor weak choice principles as in [3, 4, 5], and this
paper relies extensively on the techniques developed there.

We finally come to the third and, in our view, the most significant drawback
of choiceless large cardinal hypotheses. The Axiom of Choice is widely accepted
and used throughout mathematics; the same cannot be said even for the weakest
large cardinal hypotheses. Expert consensus aside, it is undeniable that the Axiom
of Choice has a far greater intuitive appear than the large cardinal hypothesis
proposed by Reinhardt. Moreover, if one grants that the “true universe of sets”
satisfies the Axiom of Choice, then what basis could one possibly have for believing
in the consistency of Reinhardt’s hypothesis? Could Kunen’s inconsistency result
be a precursor to a deeper result refuting Reinhardt’s hypothesis without the Axiom
of Choice?

We will only briefly respond to these philosophical questions. First, there are
reasons to study the consequences of choiceless large cardinal hypotheses even if
one accepts the Axiom of Choice. Large cardinal hypotheses remain our best tools
for gauging the consistency of theories beyond ZFC, and at this point there are no
natural hypotheses consistent with choice that match the choiceless large cardinal
hypotheses in strength. This is a situation that demands investigation, for anyone
interested in the consistency hierarchy, regardless of one’s perspective on the nature
of the universe of sets.

Second, given the results of Schlutzenberg [8], it is conceivable that choiceless
large cardinal hypotheses may hold in inner models of certain strong large cardinal
hypotheses consistent with the Axiom of Choice. In fact, this is what Schlutzenberg
proved for the weakest choiceless large cardinal hypothesis; namely, the existence of
an elementary embedding from Vλ+2 to itself. If this is the case, then the situation
is quite similar to determinacy axioms, where a choiceless hypothesis is important
because it axiomatizes a restricted subclass of the universe.

Finally, while it is entirely reasonable to question the consistency of choiceless
large cardinal hypotheses, the only way to settle the question is to achieve a deeper
understanding of them. The recent research into these hypotheses seems to suggest
that their theory is rich and coherent, perhaps a sign that they are consistent after
all. While there are other avenues for investigating the consistency of choiceless
large cardinals (in one direction, for example, the attempt to prove Woodin’s HOD
conjecture and in the other, the attempt to extend Schlutzenberg’s consistency
results to stronger hypotheses), the most direct approach is to develop the theory
of these hypotheses. This paper is a contribution to that project.

1.1. The main theorems. The Lindenbaum number of a set X, denoted by
ℵ∗(X), is the strict supremum of the lengths of all wellfounded relations on X.
Equivalently,

ℵ∗(X) = sup{η + 1 : η ∈ Ord and η ≤∗ X}

where A ≤∗ B abbreviates the statement that there is a surjective partial function
from B to A. (Of course if A is nonempty and A ≤∗ B, then there will be a
surjective total function from B to A; as it happens, though, the natural surjection
is often partial.)

This notion is dual to the Hartogs number, the ordinal

ℵ(X) = sup{η + 1 : η ∈ Ord and η ≤ X}
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where A ≤ B abbreviates the statement that there is an injective function from A
to B. Clearly ℵ(X) ≤ ℵ∗(X), and equality holds assuming the Axiom of Choice,
in which case ℵ(X) = ℵ∗(X) = |X|+ for all sets X. In the choiceless context,
Lindenbaum and Hartogs numbers both provide a rough ordinal measure of the
cardinality of a set, but the two values may be quite different.

For each ordinal α, we define the α-th Lindenbaum number :

θα = sup{ℵ∗(x) : x ∈ Vα}

If α is a successor ordinal, then θα = ℵ∗(Vα−1) is the supremum of the lengths of
all wellfounded relations on Vα−1, and if γ is a limit ordinal, then θγ = supξ<γ θξ.
For example, θω = ω and θω+1 = ω1.

The Lindenbaum numbers provide a rough measure of the size of the levels of
the cumulative hierarchy. Assuming the Axiom of Choice,

θω+α = sup
ξ<α

ℶ+
ξ

and so the generalized continuum hypothesis is equivalent to the assertion that
θω+α = ℵα for all ordinals α. (It is unclear whether this equality implies the
generalized continuum hypothesis in the context of ZF alone.)

In this paper, however, we will avoid the Axiom of Choice in order to study large
cardinal hypotheses so strong as to contradict it. Our main results show that these
choiceless large cardinal hypotheses imply a dramatic failure of the generalized
continuum hypothesis at alternating levels of the cumulative hierarchy. An ordinal
κ is a strong limit cardinal if for all ordinals η < κ, there is no surjection from P (η)
to κ; in other words, ℵ∗(P (η)) ≤ κ.

Theorem. Assume there is an elementary embedding from the universe of sets to
itself. Then for all sufficiently large limit ordinals γ and all natural numbers n, the
following hold:

(1) θγ+2n is a strong limit cardinal.
(2) θγ+2n+1 is not a strong limit cardinal: in fact, θγ+2n+1 ≤∗ P (θγ+2n).

(1) is established by Theorem 8.1 and (2) by Theorem 8.3. An outline of the
proof of (1) appears in Section 1.2.

An ordinal ϵ is even if ϵ = γ + 2n for some limit ordinal γ and natural number
n; all other ordinals are odd. The theorem above highlights a key difference be-
tween the structure of the even and odd levels of the cumulative hierarchy under
choiceless large cardinal hypotheses. It also indicates an analogy with the Axiom of
Determinacy (AD), which has similar ramifications for much smaller Lindenbaum
numbers: under AD, the cardinal θω+2, which is usually denoted by Θ, is a strong
limit cardinal whereas θω+3 = Θ+. The former is a theorem of Moschovakis [9],
while the latter is Proposition 2.2, a simple observation of the author’s (and maybe
others’).

The first instances of the periodicity phenomena around choiceless cardinals were
discovered by Schlutzenberg and the author independently [10]: if α is an ordinal
and j : Vα → Vα is an elementary embedding, then j is definable over Vα from
parameters if and only if α is odd. The results of this paper go beyond those of
Goldberg–Schlutzenberg by identifying periodic properties of the cumulative hi-
erarchy that make no reference to metamathematical notions such as elementary
embeddings and definability.
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The calculation of the Lindenbaum numbers requires the development of some
machinery for choiceless cardinals (continuing the work of [6]), which yields some
other theorems. For example, the proof passes through the following result on the
relationship between Hartogs numbers and Lindenbaum numbers:

Theorem 5.1. If ϵ is even and there is an elementary embedding from Vϵ+3 to
itself, then ℵ(Vϵ+2) = θϵ+2.

In other words, there is no θϵ+2-sequence of distinct subsets of Vϵ+1. Note that
under the Axiom of Choice, this equality is false since θϵ+2 = |Vϵ+1|+ ≤ |Vϵ+2|,
whereas ℵ(Vϵ+2) = |Vϵ+2|+. The question of whether ℵ(Vα) = θα for odd ordinals
α is open; in general, θα ≤ ℵ(Vα), but the reverse inequality is far from clear.

Theorem 7.1. If there is an elementary embedding from the universe of sets to
itself, then for some cardinal κ, for all even ϵ ≥ κ, if η < θϵ+2, then the set of
κ-complete ultrafilters on η has cardinality less than θϵ+2.

These theorems are analogous to consequences of the determinacy of real games
(ADR), which implies that ℵ(Vω+2) = Θ and that for all η < Θ, the set of ultrafilters
on η has cardinality less than Θ. The latter is a theorem of Kechris [11], while
the former is part of the folklore, perhaps first observed by Solovay. Both these
theorems require the hypothesis ADR since their conclusions are false in L(R).
Similarly, the conclusions of Theorem 5.1 and Theorem 7.1 are false in L(Vϵ+1), or
even in Schlutzenberg’s model L(Vϵ+1, j), and so they cannot be proved assuming
just the existence of an elementary embedding from Vϵ+2 to Vϵ+2.

1.2. Outline of the paper. In this section, we outline the proof of the theorem
that all sufficiently large even Lindenbaum numbers are strong limit cardinals, and
then we outline the structure of the paper. (The proof that odd Lindenbaum
numbers are not strong limit cardinals involves similar ideas, so we do not provide
an outline here.)

The key theorems we need to establish to analyze the even Lindenbaum num-
bers are two choiceless results concerning the structure of rank-to-rank embeddings
(Lemma 3.3 and Theorem 3.4) and a bound on the number of ultrafilters on an
ordinal (Corollary 7.13).

Our results on rank-to-rank embeddings derive from the notes [12]. They concern
the following question: if j : Vα → Vα is an elementary embedding and β < α is
an ordinal, how hard is it to define j[β] over Vα? Lemma 3.3, which is very easy
to prove, shows that if X ≤∗ Y are sets in Vα, then j[X] is definable over Vα from
j[Y ] and parameters in ran(j). Theorem 3.4 shows that in certain important cases,
this is optimal. Fix an even ordinal ϵ > crit(j) such that θϵ+2 ≤ α and j(ϵ) = ϵ.
On the one hand, Lemma 3.3 implies that for any β < θϵ+2, j[β] is definable in Vα
from j[Vϵ] and parameters in ran(j). (We use the main theorem of [10] here (see
Theorem 3.1 below) to define j[Vϵ+1] from j[Vϵ].) On the other hand, Theorem 3.4
shows that j[θϵ] is not definable over Vα from parameters in ran(j) ∪ Vϵ+2.

Corollary 7.13, our bound on the number of ultrafilters on an ordinal, asserts
that for sufficiently large even ordinals ϵ, if η < θϵ+2, then there is a surjection
from Vϵ+1 onto the set of wellfounded ultrafilters on η. The hypothesis here is the
existence of a nontrivial elementary embedding from the universe of sets to itself.
(We will actually use the slightly weaker hypothesis that there is a rank Berkeley
cardinal, Section 6.) Here, an ultrafilter U on a set X is wellfounded if whenever
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(A,≺) is a wellfounded structure, (A,≺)X/U is again wellfounded. In the context
of the Axiom of Choice (or just the Axiom of Dependent Choice), an ultrafilter is
wellfounded if and only if it is countably complete. The bulk of this paper is spent
establishing this theorem.

These results can be combined to prove that if there is an elementary embedding
from the universe of sets to itself, then all sufficiently large even Lindenbaum num-
bers are strong limit cardinals. The case of limit Lindenbaum numbers is handled
easily in Section 2, so let us focus on proving that θϵ+2 is a strong limit cardinal.
Our large cardinal hypothesis provides us with an ordinal α > ϵ and an elementary
embedding j : Vα → Vα with crit(j) < ϵ and j(ϵ) = ϵ. (See the discussion at the
beginning of Section 6 for details.) We can choose α so that in addition Vα is a
Σ2-elementary substructure of the universe of sets.

By Theorem 3.4, j[θϵ+2] is not definable over Vα from parameters in ran(j)∪Vϵ+2.
Combining this with Lemma 3.3, if X is a set such that j[X] is definable over Vα
from parameters in ran(j) ∪ Vϵ+2, then we can conclude that X does not surject
onto θϵ+2. Therefore to prove that θϵ+2 is a strong limit cardinal, it suffices to
show that for arbitrarily large ordinals η < θϵ+2, j[P (η)] is definable over Vα from
parameters in ran(j) ∪ Vϵ+2.

Fix an ordinal η < θϵ+2 such that η ∈ ran(j). Since ran(j) is an elementary
substructure of Vα containing η and j(η), ran(j) contains a surjection

f : Vϵ+1 → j(η) × B

where B is the set of wellfounded ultrafilters on η. Consider the sequence of

ultrafilters U⃗ = ⟨Uξ⟩ξ<j(η) where Uξ = {S ⊆ η : ξ ∈ j(S)} is the ultrafilter derived
from j using ξ. For each ξ < j(η), Uξ is wellfounded in Vα since the ultrapower
of α by Uξ can be embedded back into Vα. Since Vα ⪯Σ2 V , it follows that Uξ

is wellfounded. Therefore the sequence U⃗ , which we identify with its graph, is a

subset of j(η) × B. Let A ⊆ Vϵ+1 be the preimage of U⃗ under f . Then U⃗ is
definable over Vα from parameters in ran(j) ∪ Vϵ+2; namely, from f ∈ ran(j) and

A ∈ Vϵ+2. But j ↾ P (η) is interdefinable with U⃗ : for S ⊆ η,

j(S) = {ξ < j(η) : S ∈ Uξ}
Hence j[P (η)] is definable from parameters in ran(j) ∪ Vϵ+2, as desired.

We now outline the contents of the paper. Section 2 proves the limit case of the
main theorem and proves a special case of the main theorem from the Axiom of
Determinacy. Section 3 reviews the periodicity phenomena for rank-to-rank em-
beddings from [10] and proves the definability results Lemma 3.3 and Theorem 3.4
mentioned above. The latter result has a more interesting proof that involves ordi-
nal definability and forcing.

Section 4 turns to certain analogs of the Moschovakis coding lemma from the
theory of determinacy that can be proved from choiceless large cardinal axioms.
The Moschovakis coding lemma is the key to the proof that Θ = θω+2 is a strong
limit cardinal assuming the Axiom of Determinacy, and Woodin proved a coarse
generalization of this lemma in order to establish that under I0, in L(Vλ+1), θλ+2 is
a strong limit cardinal. We generalize Woodin’s result to certain more complicated
inner models.

Section 5 establishes our bound on the Hartogs number of Vϵ+2 under the as-
sumption of an elementary embedding from Vϵ+3 to Vϵ+3. In Section 6, we review
some of the large cardinal machinery from [6], especially concerning Schlutzenberg’s
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notion of a rank Berkeley cardinal and the pseudo-supercompactness properties that
follow from it. Then, in Section 7, the proof of Section 5 is combined with the cod-
ing lemmas from Section 4 and the results of Section 6 to establish our bound on
the number of wellfounded ultrafilters on an ordinal (Corollary 7.13). This requires
the development of some ultrafilter theory for choiceless cardinals, which is why
Section 7 is the longest section of this paper.

Finally Section 8 establishes the main theorems, and Section 9 lists some related
open questions.

2. Limit Lindenbaum numbers and AD

The following lemma shows that for limit levels of the cumulative hierarchy, our
main theorem is a simple consequence of ZF.

Lemma 2.1. Suppose γ is a limit ordinal. Then θγ is a strong limit cardinal and
θγ+1 = θ+γ .

Proof. To see that θγ is a strong limit cardinal, fix η < θγ . For some α < γ,
η ≤∗ Vα, and so P (η) ≤ Vα+1, Therefore if ν ≤∗ P (η), then ν ≤∗ Vα+1, and hence
ν < θγ .

To see that θγ+1 = θ+γ , suppose f : Vγ → ν is a surjection, and we will show
that |ν| ≤ θγ . Note that

ν =
⋃
α<γ

f [Vα]

As a consequence, we have

|ν| ≤
∣∣∣∣γ × sup

α<γ
ot(f [Vα])

∣∣∣∣
Indeed, letting gα denote the unique increasing bijection from ot(f [Vα]) to f [Vα],
one can define a partial surjection g : γ×supα<γ ot(f [Vα]) by setting g(α, ξ) = gα(ξ)
whenever ξ < ot(f [Vα]). For each α < γ, f [Vα] is a wellorderable set that is the
surjective image of Vα, and so ot(f [Vα]) < θγ . Hence supα<γ ot(f [Vα]) ≤ θγ , which
implies that |ν| ≤ |γ × θγ | = θγ . □

If ϵ is an infinite even successor ordinal, we do not have nearly enough slack
to generalize the proof above that θγ is a strong limit cardinal to θϵ. Moreover,
to prove θϵ+1 = θ+ϵ would seem to require a hierarchy on Vϵ similar to the rank
hierarchy on Vγ .

The Axiom of Determinacy allows us to generalize Lemma 2.1 in the case that
ϵ = ω+2, providing the necessary slack in the strong limit result via the Moschovakis
coding lemma and the hierarchy for Vω+2 via Wadge’s semi-linear ordering theorem.

Proposition 2.2 (AD). Let Θ = θω+2. Then Θ is a strong limit cardinal and
θω+3 = Θ+.

Proof. That Θ is a strong limit cardinal is a consequence of the Moschovakis Coding
Lemma [9], which implies that for all η < Θ, there is a surjection from Vω+1 onto
P (η), and hence ℵ∗(P (η)) ≤ ℵ∗(Vω+1) = Θ.

We now turn to the proof that θω+3 = Θ+. For simplicity, we first prove the re-
sult assuming the Axiom of Dependent Choice. Then by the Martin-Monk theorem
[13], the subsets of Vω+1 are arranged in a wellfounded hierarchy according to their
position in the Wadge order of continuous reducibility. (The Martin-Monk theorem
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requires the Axiom of Dependent Choice for reals; it is open whether the Axiom of
Determinacy suffices to prove the Axiom of Dependent Choice for reals or whether
it implies the Martin-Monk theorem.) For α < Θ, let Γα be the set of subsets of
Vω+1 of rank α in the Wadge order. By Wadge’s lemma, Γα ≤∗ Vω+1: indeed, for
any A ⊆ Vω+1 outside Γα, Γα is contained in the set of continuous preimages of A.

Suppose ν ≤∗ Vω+2 is an ordinal, and we will show ν < Θ+. Fixing a surjection
f : Vω+2 → ν, ν =

⋃
α<Θ f [Γα]. As in the proof of Lemma 2.1, this implies that

|ν| ≤
∣∣∣∣Θ × sup

α<Θ
ot(f [Γα])

∣∣∣∣
Again, for all α < Θ, since Γα ≤∗ Vω+1, we have f [Γα] ≤∗ Vω+1 and hence
ot(f [Γα]) < Θ. It follows that |ν| ≤ |Θ × Θ| = Θ, which implies that ν < Θ+.

We now prove the proposition without appealing to the Axiom of Dependent
Choice using a trick from [14]. For each A ⊆ Vω+1, let δ(A) be the supremum of
the lengths all wellfounded binary relations on Vω+1 that are continuously reducible
to A (when viewed as subsets of Vω+1). For each ordinal α < Θ, let Λα be the set
of all A ⊆ Vω+1 with δ(A) ≤ α. As above, Wadge’s lemma implies that for α < Θ,
Λα ≤∗ Vω+1. The argument of the previous paragraph can now be pushed through
by replacing Γα with Λα. □

Numerology suggests that this pattern should extend to θω+4 and θω+5, but
nothing of the sort can be proved from AD alone, which seems to have little to say
about the structure of Vω+3. Still, it is tempting to fantasize about some extension
of AD that answers such questions in the expected way.

3. Periodic properties of rank-to-rank embeddings

Recall the main theorem of [10], already mentioned in the introduction:

Theorem 3.1 (Goldberg, Schlutzenberg). Suppose α is an ordinal. If j : Vα → Vα
is an elementary embedding, j is definable over Vα from parameters if and only if
α is odd. □

The analysis of the Lindenbaum numbers requires not only this theorem but
also the details of its proof. The proof of Theorem 3.1 rests on the natural attempt
to define, for every ordinal α, the extension “by continuity” of a Σ1-elementary
embedding j : Vα → Vα to Vα+1, which we now describe. (The extension opera-
tion will be defined without regard to the parity of α, but the operation will only
successfully extend j to an elementary embedding of Vα+1 in the case that α is
even. Even in this case, not every elementary embedding of Vα will extend to an
elementary embedding of Vα+1; the point is just that if j extends, then its unique
extension is its canonical extension.)

First, let Hα be the union of all transitive sets M such that M ≤∗ Vγ for some
γ < α. A Σ1-elementary embedding j : Vα → Vα can be extended to act on Hα as
follows. Fix x ∈ Hα, and let R ∈ Vα code a wellfounded relation whose transitive
collapse is the transitive closure of {x}. Then define j(x) to be the unique set y such
that the transitive collapse of j(R) is the transitive closure of {y}. This extends j
to a well-defined Σ0-elementary embedding j : Hα → Hα. If j is Σn+1-elementary
on Vα, then its extension to Hα is Σn-elementary. Throughout this paper, when
faced with an elementary embedding of Vα, we will often make use of its extension
to Hα without comment.
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Second, we attempt to extend j to Vα+1. If j : Vα → Vα is a Σ1-elementary
embedding, the canonical extension of j is the map j+ : Vα+1 → Vα+1 defined by

j+(A) =
⋃

N∈Hα

j(A ∩N)

The point here is that if N ∈ Hα, then A ∩ N is also in Hα. (For the purposes
of extending j to Vα+1, we could restrict our attention to N ∈ Hα ∩ Vα+1, or
equivalently to N ∈ Vα+1 such that N ≤∗ Vα; this is how the canonical extension
is defined in [10].)

It is not hard to show that the graph of j+ is definable over Vα+1 from (a code
for) j. Theorem 3.1 is proved by an induction that establishes:

Theorem 3.2. Suppose ϵ is an even ordinal.

(1) If i : Vϵ → Vϵ is elementary, then its extension to Hϵ is cofinal: Hϵ =⋃
N∈Hϵ

i(N).

(2) If j : Vϵ+1 → Vϵ+1 is elementary, then j = (j ↾ Vϵ)+. □

Next, we establish a strong form of undefinability for elementary embeddings of
even levels of the cumulative hierarchy (Theorem 3.4), which will be used exten-
sively in our analysis of Lindenbaum numbers. For context, we first state a trivial
definability theorem to which the aforementioned undefinability theorem can be
viewed as a converse:

Lemma 3.3. Suppose j : M → N is an elementary embedding between two tran-
sitive structures. Suppose X,Y ∈ M and M satisfies X ≤∗ Y . If j[Y ] ∈ N , then
j[X] is definable over N from j[Y ] and parameters in j[M ].

Proof. Let f : Y → X be a surjection in M . Then j[X] = {j(f)(a) : a ∈ j[Y ]},
and so j[X] is definable over N from j[Y ] and the parameter j(f), which belongs
to j[M ]. □

In particular, for all ordinals η < ℵ∗(Y ), j[η] is definable over N from j[Y ] and
parameters in j[M ]. Our strong undefinability theorem reads as follows:

Theorem 3.4. If ϵ ≤ α are ordinals, ϵ is even, and j : Vα → Vα is elementary,
then for all γ < ϵ, j[θϵ] is not definable over Hα from j[Vγ ] and parameters in
j[Hα].

Theorem 3.4 will follow from a general ultrafilter-theoretic fact:

Theorem 3.5. Suppose U is an ultrafilter on a set X such that X ×X ≤∗ X and
κ = crit(jU ). Then for any ordinal η, if jU [η] ∈MU , then η ≤∗ X.

We now show how to deduce Theorem 3.4 from Theorem 3.5, which we will
establish shortly.

Proof of Theorem 3.4. Assume towards a contradiction that for some γ < ϵ and
p ∈ Hα, j[θϵ] is definable over Hα from j[Vγ ] and j(p). If ϵ = γ + 1, then γ is odd
and so by Theorem 3.1, j[Vγ ] is definable over Hα from j[Vγ−1]. By replacing γ by
γ − 1 if necessary, we can assume without loss of generality that γ + 1 < ϵ.

Let U be the ultrafilter on Vγ+1 derived from j using j[Vγ ], and let k : Ult(Hα, U) →
Hα be the usual factor embedding defined by

k([f ]U ) = j(f)(j[Vγ ])
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Fix a formula φ such that

j[θϵ] = {ξ ∈ Hα : Hα ⊨ φ(ξ, j[Vγ ], j(p))}
For each x ∈ Vγ+1, let f(x) = {ξ ∈ Hα : Hα ⊨ φ(ξ, x, p)}. Then

j(f)(j[Vγ ]) = {ξ ∈ Hα : Hα ⊨ φ(ξ, j[Vγ ], j(p)}
and therefore

[f ]U = k−1[j[θϵ]] = jU [θϵ]

But then by Theorem 3.5, θϵ ≤∗ Vγ+1, contrary to the fact that γ + 1 < ϵ. □

Though Theorem 3.5 itself is purely combinatorial, its proof uses the techniques
of ordinal definability and forcing. Suppose Y is a set and X is ordinal definable
from Y . Let ℵ∗

Y (X) denote the least ordinal δ such that there is no surjection from
X to δ that is definable from Y and ordinal parameters.

We use the following variant of Vopenka’s theorem [15] that every set of ordinals
belongs to a set forcing extension of HOD. To avoid ambiguity, let us first establish
some notation. For any S, we denote by ODS the class of sets that are ordinal
definable using S as a parameter. We denote by HODS the union of all transitive
subsets of ODS . Then HODS is an inner model of ZFC.

Lemma 3.6 (Vopenka). Suppose Y is a set and X is ordinal definable from Y .
Then for any x ∈ X, HODY,x is a ℵ∗

Y (X)-cc generic extension of HODY . □

We will only use Lemma 3.6 to conclude that ℵ∗
Y (X) is regular in HODY,x for all

x ∈ X and every subset of ℵ∗
Y (X) in HODY that is stationary in HODY remains

stationary in HODY,x. We verify these properties combinatorially assuming ℵ∗
Y (X)

is regular in HODY .
Let θ = ℵ∗

Y (X). The key point is that Bukovsky’s uniform θ-covering property
holds between HODY and HODY,x [16]: if I ∈ HODY and f : I → HODY is in
HODY,x, then there is some F : I → HODY in HODY such that for all i ∈ I,
f(i) ∈ F (i) and |F (i)|HODY < θ. To see this, let φ be a formula in the language of
set theory such that for some ν ∈ Ord, for all i ∈ I,

f(i) = z ⇐⇒ V ⊨ φ(i, z, Y, x, ν)

For each i ∈ I, let F (i) be the set of z ∈ HODY such that for some x ∈ X, z is the
unique set satisfying φ(i, z, Y, x, ν); f(i) ∈ F (i), and there is an ODY surjection
from X to F (i), so |F (i)|HODY < θ. Moreover, F is definable from Y and ν, so
F ∈ HODY . This establishes the uniform θ-covering property between HODY and
HODY,x.

Bukovsky’s theorem [17, 18] allows us to conclude from the uniform covering
property that HODY,x is a θ-cc generic extension of HODY , which yields the version
of Vopenka’s theorem stated in Lemma 3.6. But it is actually easy to deduce
the combinatorial consequences of this that we will use directly from the uniform
covering property. Suppose M ⊆ N has the θ-uniform covering property. If γ ≥ θ
is regular in M , it remains regular in N for the following reason. Assume towards
a contradiction that γ is singular in N . Then for some δ < γ, there is a cofinal
function f : δ → θ that belongs to N . Then there is a function F : δ → Pθ(θ)
in M such that f [δ] ⊆

⋃
α<δ F (α). Thus

⋃
α<δ F (α) is cofinal in θ. But in M ,

|
⋃

α<δ F (α)| ≤ δ · supα<δ |F (α)| < γ, contradicting that γ is regular in M .
Similarly, one can prove that if γ ≥ θ is regular, then any M -stationary set S ⊆ γ

remains stationary in N . Assume not, towards a contradiction, and let f : γ → γ
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be a function in N such that S is disjoint from the set of closure points of f . Let
F : γ → Pθ(γ) be a function in M witnessing the θ-cover property with respect to
f . Then define a function g : γ → γ in M by g(α) = supF (α). Then the set of
closure points of g are a subset of the set of closure points of f , and so S is disjoint
from the closure points of g, contrary to our assumption that S is stationary in M .

The HODY -regularity of θ = ℵ∗
Y (X) seems to require some assumption on Y ;

we will assume that there is an ODY surjection from X onto X×X. Then if ν < θ
and f : ν → θ, we can prove that f is bounded as follows. First, for each α < ν,
let gα : X → f(α) be the ODY -least surjection. Stringing these together yields an
ODY -surjection g : ν × X → supα<ν f(α); namely, g(α, x) = gα(x). Since ν × X
is an ODY -surjective image of X ×X which is an ODY -surjective image of X, we
obtain that supα<ν f(α) < θ.

We now return to our ultrafilter undefinability result.

Proof of Theorem 3.5. Fix a function f on X such that [f ]U = jU [η] and a surjec-
tion p : X → X ×X, and let Y be a set from which f and p are ordinal definable.
Let δ = ℵ∗

Y (X). Then δ is regular in M = HODY . Assume towards a contradiction
that η ≥ δ.

For each x ∈ X, let Mx = HODY,x, so that Mx is a δ-cc generic extension of
M by Lemma 3.6. Let N =

∏
x∈X Mx/U be the ultraproduct formed using only

those functions on X that are ordinal definable from Y . For each such function
g, let [g] denote the element of N it represents. Then this ultraproduct satisfies
 Loś’s theorem in the sense that N ⊨ φ([g]) if and only if Mx ⊨ φ(g(x)) for U -
almost all x ∈ X. This is because for any ODY function F ∈

∏
x∈X Mx such that

F (x) ̸= ∅ for U -almost all x ∈ X, we can obtain an ODY function f ∈
∏

x∈X Mx

that uniformizes F by letting f(x) be the ODY,x-least element of F (x) for each
x ∈ X such that F (x) ̸= ∅.

Since M ⊆ Mx for all x ∈ X, we can define a function i on M by i(B) = [cB ]
where cB : X → {B} is the constant function. Then i is an elementary embedding
from M to the substructure H of N given by

H = {a ∈ N : ∃B ∈M (N ⊨ a ∈ i(B))}

Essentially, we are defining H to be the union
⋃

B∈M i(B), but since we do not
assume that N is wellfounded (or equivalently transitive), making this precise is a
little bit cumbersome.

Identifying the wellfounded part of N with its transitive collapse, δ + 1 ⊆ N
since i[δ] = [f ] ∩ i(δ) belongs to N . By our remarks above (or Lemma 3.6), δ is
regular in Mx for all x ∈ X, and so i(δ) is regular in N . Moreover i(δ) = sup i[δ]
since there is no ODY function from X to an unbounded subset of δ. (The range
of such a function would be an ODY cofinal subset of δ of ordertype less than
δ, which contradicts that δ is regular in HODY .) Since i[δ] belongs to N and is
an unbounded subset of the N -regular cardinal i(δ), N contains an isomorphism
between i(δ) and i[δ]. Therefore i(δ) = δ.

Working in M , fix a partition S = ⟨Sα : α < δ⟩ into stationary sets of the set
S of ordinals less than δ that have countable cofinality in M . Let T = i(S), so
T = ⟨Tα : α < δ⟩ is a partition of i(S) into H-stationary sets. For each x ∈ X, any
set in P (δ) ∩M that is stationary in M remains stationary in Mx by Lemma 3.6,
and so by  Loś’s theorem, any set in P (δ) ∩ H that is stationary in H remains
stationary in N . Since i is continuous at ordinals of cofinality ω, the set i[δ] is an
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ω-closed unbounded subset of δ in V and in N . It follows that Tκ ∩ i[δ] ̸= ∅ where
κ = crit(jU ) = crit(i). But if i(ξ) ∈ Tκ, then ξ ∈ Sα for some α < δ, and hence
ξ ∈ Ti(α). Since T is a partition, the fact that Tκ ∩ Ti(α) ̸= ∅ implies that κ = i(α),
which is impossible since the critical point of an elementary embedding is never in
that embedding’s range. □

4. The coding lemma

In this section, we establish an analog of the Moschovakis coding lemma [9] under
choiceless large cardinal hypotheses. The proof is a slight twist on an argument of
Woodin [19] establishing a similar property of L(Vλ+1) under I0 in the context of
ZFC.

Recall that the Moschovakis coding lemma states that if η is an ordinal and
φ : Vω+1 → η is a surjective function, then for any binary relation R on Vω+1 with
φ[dom(R)] = η, there is some S ⊆ R with φ[dom(S)] = η such that S is Σ1-definable
from parameters over the structure (Vω+1,∈,≺), where ≺ is the prewellordering of
Vω+1 induced by φ.

The coarse version of the coding lemma in which we will be interested states that
if η is an ordinal and φ : Vϵ+1 → η is a surjective function, then there is a set Γ ⊆
Vϵ+2 such that Γ ≤∗ Vϵ+1 and every binary relation R on Vϵ+1 with φ[dom(R)] = η
has a subrelation S ∈ Γ such that φ[dom(S)] = η. Thus unlike Moschovakis’s
theorem, there is no sharp bound on the definability of the subrelation S in terms
of φ; there seems to be little one can say about the structure of Γ except that
Γ ≤∗ Vϵ+1, which is already substantive. This is the variant of the coding lemma
that Woodin established in L(Vϵ+1) assuming I0. If this could be proved in V under
choiceless large cardinal hypotheses, it would easily imply the result that θϵ+2 is a
strong limit cardinal:

Proposition 4.1. Assuming the coding lemma, P (η) ≤∗ Vϵ+1 for every η < θϵ+2.

Proof. Let φ : Vϵ+1 → η be a surjective function and let Γ ⊆ Vϵ+2 be a set such
that Γ ≤∗ Vϵ+1 and every binary relation R on Vϵ+1 with φ[dom(R)] = η has
a subrelation S ∈ Γ such that φ[dom(S)] = η. For each S ∈ Γ such that S ⊆
Vϵ+1 × {0, 1}, let AS ⊆ η be defined by

AS = {φ(x) : S(x, 1)}
For all A ⊆ η, we will show there is some S ∈ Γ such that A = AS , which will
imply that P (η) ≤∗ Γ ≤∗ Vϵ+1, completing the proof.

Fix A ⊆ η. Let χA : η → {0, 1} denote the characteristic function of A (so
χA(α) = 1 iff α ∈ A), and let R : Vϵ+1 → {0, 1} be the composition χA ◦ φ. We
can view R as a binary relation on Vϵ+1. If S ∈ Γ is a subrelation of R such that
φ[dom(S)] = η, then AS = {φ(x) : S(x, 1)} = A, as desired. □

We do not know how to prove a coding lemma in anything like this level of
generality. Instead we will prove coding lemmas for certain inner models of V . Still
this involves improving on Woodin’s theorem in a nontrivial way.

For ordinals λ ≤ ϵ, let I(λ, ϵ) abbreviate the statement that for all α < λ
and all A ⊆ Vϵ+1, there is some A′ ⊆ Vϵ+1 admitting elementary embeddings
j0, j1 : (Vϵ+1, A

′) → (Vϵ+1, A) whose distinct critical points lie between α and λ.
Admittedly, this is a somewhat contrived large cardinal hypothesis, but it is useful
because if ϵ is even, I(λ, ϵ) is downwards absolute to inner models containing Vϵ+1:
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Lemma 4.2. Suppose λ ≤ ϵ are ordinals, ϵ is even, and M is an inner model
containing Vϵ+1. If I(λ, ϵ) holds, then I(λ, ϵ) holds in M .

Proof. Suppose α < λ and A ⊆ Vϵ+1 belongs to M . We must find a set A′ ∈M and
elementary embeddings j0, j1 : (Vϵ+1, A

′) → (Vϵ+1, A) in M whose distinct critical
points lie between α and λ. Applying I(λ, ϵ), there are elementary embeddings
j0, j1 : (Vϵ+1, A

′) → (Vϵ+1, A) whose distinct critical points lie between α and λ.
Note that j0 ∈ M since j0 ↾ Vϵ is essentially an element of Vϵ+1 and Theorem 3.1
implies that j0 is definable over Vϵ+1 from j0 ↾ Vϵ. Similarly, j1 ∈ M . Because
of this, A′ ∈ M : note that A′ = j−1

0 [A], which belongs to M since A and j0
belong to M . Thus we have found set A′ ∈ M and elementary embeddings j0, j1 :
(Vϵ+1, A

′) → (Vϵ+1, A) in M whose distinct critical points lie between α and λ, as
desired. □

A much more natural large cardinal hypothesis with the same absoluteness prop-
erty as I(λ, ϵ) simply states that for all α < λ and all A ⊆ Vϵ+1, there is some
A′ ⊆ Vϵ+1 admitting an elementary embedding j : (Vϵ+1, A

′) → (Vϵ+1, A) such that
α < crit(j) < λ. It is unclear whether I(λ, ϵ) follows from this weaker principle or
whether this principle implies the coding lemma.

On the other hand, I(λ, ϵ) does follow from the existence of an elementary embed-
ding j : Vϵ+2 → Vϵ+2 with critical point κ such that λ = sup{κ, j(κ), j(j(κ)), . . . }:

Lemma 4.3. If λ = sup{κ, j(κ), j(j(κ)), . . . } for some elementary j : Vϵ+2 → Vϵ+2

with critical point κ, then I(λ, ϵ) holds.

Proof. Let α < λ be the least ordinal such that I(λ, ϵ) fails for α in the sense that
there is some set A ⊆ Vϵ+1 such that there is no A′ ⊆ Vϵ+1 admitting elementary
embeddings j0, j1 : (Vϵ+1, A

′) → (Vϵ+1, A) whose distinct critical points lie between
α and λ. Note that α is definable over Vϵ+2, and so j(α) = α. Since λ is the least
fixed point of j above κ, κ > α.

Fix a set A ⊆ Vϵ+1 such that (α,A) witnesses the failure of I(λ, ϵ). Let A1 = j(A)
and A2 = j(j(A)). By the elementarity of j ◦ j, (α,A2) also witnesses the failure
of I(λ, ϵ). Since j0 = j ↾ Vϵ+1 is an elementary embedding from (Vϵ+1, A) to
(Vϵ+1, A1), the elementarity of j implies that j1 = j(j0) is an elementary embedding
from (Vϵ+1, A1) to (Vϵ+1, A2). But note that j0 is also an elementary embedding
from (Vϵ+1, A1) to (Vϵ+1, A2) since j(A1) = A2. We have α < crit(j0) = κ < j(κ) =
crit(j1) < λ. Therefore j0 and j1 witness I(λ, ϵ) for (α,A2), which contradicts that
(α,A2) witnesses the failure of I(λ, ϵ). □

We prove one last lemma about the principle I(λ, ϵ).

Lemma 4.4. If ϵ is an even ordinal, then the following are equivalent:

(1) I(λ, ϵ) holds.
(2) For any transitive set M ∈ Hϵ+2 with Vϵ+1 ⊆ M , there is a transitive set

M ′ ∈ Hϵ+2 with Vϵ+1 ⊆M ′ admitting elementary embeddings j0, j1 : M ′ →
M such that crit(j0) < crit(j1) < λ.

(3) For any transitive set M ∈ Hϵ+2 with Vϵ+1 ⊆M and any a ∈M , there is a
transitive set M ′ ∈ Hϵ+2 with Vϵ+1 ⊆M ′ admitting elementary embeddings
j0, j1 : M ′ → M such that crit(j0) < crit(j1) < λ and for some a′ ∈ M ′,
j0(a′) = j1(a′) = a.
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(4) For any η < θϵ+2 and any transitive set M ∈ Hϵ+2 with Vϵ+1 ∪ {η} ⊆ M
and any a ∈M , there is a transitive set M ′ ∈ Hϵ+2 with Vϵ+1 ∪ {η} ⊆M ′

admitting elementary embeddings j0, j1 : M ′ → M such that crit(j0) <
crit(j1) < λ, j0(η) = j1(η) = η, and for some a′ ∈M ′, j0(a′) = j1(a′) = a.

Proof. The implication (1) implies (2) is proved by applying I(λ, ϵ) to a wellfounded
relation A on Vϵ+1 whose transitive collapse is M .

The implication (2) implies (3) is proved by applying (2) to the transitive closure
of {M,a}.

The only slightly nontrivial implication is that (3) implies (4). Assume towards
a contradiction that (4) fails, and let η be the least ordinal such that for some
transitive set M ∈ Hϵ + 2 containing Vϵ+1 ∪ {η}, the instance of (4) for M and
η is false. (We will ignore the parameter a, which should be easy enough for the
reader to handle.) Let N ∈ Hϵ+2 be a transitive model of Kripke-Platek set theory
such that M ∈ N . Let j0, j1 : N ′ → N witness (3) for N with a = (M,η). Fix M ′

and η′ in N ′ such that j0(M ′) = j1(M ′) = M and j0(η′) = j1(η′) = η. We must
have η′ ≤ η, and therefore η′ < η by our assumption. By the minimality of η, the
instance of (4) for M ′ and η′ is true, and by the proof of Lemma 4.2, it follows
that this instance holds in N ′. But then by the elementarity of j0, the instance
of (4) for M and η holds in N , which easily implies that this instance holds in V ,
contradicting our assumption.

Finally, for the implication (4) implies (1), one proves the instance of I(λ, ϵ)
for a set A ⊆ Vϵ+1 by applying (4) (or even just (2)) to the transitive closure of
{Vϵ+1, A}. □

For the rest of this section, we fix an even ordinal ϵ. We will establish a (slightly
technical) general result with the following consequence:

Theorem 4.5. Fix a class A and let M be the minimal inner model of ZF con-
taining Vϵ+1 such that x ∩ A ∈ M for all x ∈ M . If M satisfies I(λ, ϵ) for some
λ ≤ ϵ, then for all η < θMϵ+2, M satisfies P (η) ∩M ≤∗ Vϵ+1.

If A is the Σ2-satisfaction predicate of (V,∈, B), the model M of Theorem 4.5 is
equal to the class of sets hereditarily ordinal definable from B and parameters in
Vϵ+1. This is the model to which we will typically apply Theorem 4.5.

Definition 4.6. • A set Γ ⊆ Vϵ+2 is an elementary pointclass if Γ ≤∗ Vϵ+1

and for all Σ1-elementary embeddings j : Vϵ → Vϵ and all A ∈ Γ, the image
and preimage of A under the canonical extension of j to Vϵ+1 belong to Γ.

• Let EP denote the set of all elementary pointclasses.
• If λ is an ordinal, then λ-pointclass choice holds if for any any total relation
R on EP×Vϵ+2, there is a sequence ⟨Γα⟩α<λ ∈ EPλ such that

⋃
α<λ Γα ≤∗

Vϵ+1 and for all β < λ, there is some A ∈ Γβ such that R(
⋃

α<β Γα, A).
• The weak coding lemma states that for any surjective φ : Vϵ+1 → η, there is

a set Γ ⊆ Vϵ+2 such that Γ ≤∗ Vϵ+1 and every binary relationR on Vϵ+1 with
supφ[dom(R)] = η has a subrelation S ∈ Γ such that supφ[dom(S)] = η.

Note that we can assume in the conclusion of the (weak) coding lemma that Γ
is an elementary pointclass.

Any model M as in Theorem 4.5 satisfies λ-pointclass choice since M contains
a wellordered set of elementary pointclasses whose union is Vλ+2; see the proof of
Theorem 4.5 below for details. Also note that λ-pointclass choice follows from the
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principle of λ-Dependent Choice (DCλ), which states that any <λ-closed tree with
no maximal nodes has a branch of length λ.

Lemma 4.7. Assume I(λ, ϵ) and λ-pointclass choice. Then the weak coding lemma
holds.

Proof. Suppose the weak coding lemma fails. Fix a surjection φ : Vϵ+1 → η wit-
nessing this.

By λ-pointclass choice, there is a sequence ⟨Γα⟩α<λ ∈ Hϵ+2 such that for each
β < λ, there is a binary relation R on Vϵ+1 in Γβ with supφ[dom(R)] = η that has
no subrelation S ∈

⋃
α<β Γα such that supφ[dom(S)] = η.

Let M ∈ Hϵ+2 be a transitive set such that Vϵ+1, η ∈ M and ⟨Γα⟩α<λ and φ
belong to M . By Lemma 4.4, I(λ, ϵ) implies the existence of a transitive set M ′

with Vϵ+1, η ∈ M ′ admitting elementary embeddings j0, j1 : M ′ → M such that
crit(j0) < crit(j1) < λ, j0(η) = j1(η) = η, and for some ⟨Γ′

α⟩α<λ and φ′ in M ′,
ji(⟨Γ′

α⟩α<λ) = ⟨Γα⟩α<λ and ji(φ
′) = φ for i = 0, 1.

Let κ = crit(j0). By elementarity, there is a relationR in Γ′
κ with supφ′[dom(R)] =

η that has no subrelation S ∈
⋃

α<κ Γ′
α such that supφ′[dom(S)] = η. Let R0 =

j0(R), and note thatR0 ∈ Γj0(κ) has no subrelation in Γκ such that supφ[dom(S)] =
η.

Since j1(κ) = κ and R ∈ Γ′
κ, j1(R) ∈ Γκ. Since Γκ is an elementary pointclass,

R = j−1
1 [j1(R)] ∈ Γκ and hence j0[R] ∈ Γκ. But S = j0[R] is a subrelation of j0(R)

such that
supφ[dom(S)] = sup j0 ◦ φ′[dom(R)] = η

and this is a contradiction. □

The local collection principle states that every total relation on Vϵ+1 × Vϵ+2 has
a total subrelation S such that ran(S) ≤∗ Vϵ+1. Any model M as in Theorem 4.5
satisfies the local collection principle; see the proof of Theorem 4.5 below for details.

Theorem 4.8. Assume the local collection principle and the weak coding lemma.
Then the coding lemma holds.

Proof. The proof is by induction on η. Let φ : Vϵ+1 → η be a surjection. By
the local collection principle and our induction hypothesis, there is an elementary
pointclass Γ = {Ae}e∈Vϵ+1

that witnesses the coding lemma for all γ < η.
Let Λ be an elementary pointclass containing

U = {(e, y) ∈ Vϵ+1 × Vϵ+1 : y ∈ Ae}
that witnesses the weak coding lemma for η and is closed under compositions of
binary relations. We will show that Λ witnesses the coding lemma for η.

Let R be a binary relation on Vϵ+1 such that φ[dom(R)] = η. Let R̃(x, e)
hold if Ae is a subrelation of R such that φ[dom(Ae)] = φ(x). By our induction

hypothesis, φ[dom(R)] = η, and so by the weak coding lemma, R̃ has a subrelation

S̃ ∈ Λ such that φ[dom(S̃)] = η. Now S = U ◦ R̃ is a subrelation of R in Λ such
that φ[dom(S)] = η. □

We finally establish Theorem 4.5.

Proof of Theorem 4.5. Work in M . We first establish λ-pointclass choice. Note
that there is an ordinal η and a sequence ⟨Λα⟩α<η of elementary pointclasses such
that

⋃
α<η Λα = Vϵ+2. This is because every set is ordinal definable from Ā = A∩M
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and parameters in Vϵ+1, and so we can let Λα be the set of all subsets of Vϵ+1

definable in (Vα, Ā ∩ Vα) from parameters in Vϵ+1. Since there is an OD-sequence
of surjections fα : Vϵ+1 → Λα, any <θϵ+2-sized union of Λαs is again an elementary
pointclass. Therefore the instance of λ-pointclass choice for a relation R can be
established by letting Γα = Λβ where β is least such that for some A ∈ Λβ ,
R(

⋃
ξ<α Γξ, A).

Next we establish the local collection principle. Fix a relation R on Vϵ+1×Vϵ+2.
For each x ∈ Vϵ+1, let αx be least such that for some A ∈ Λαx

, R(x,A). Let
Γ =

⋃
x∈Vϵ+1

Λαx
. Then S = R ∩ (Vϵ+1 × Γ) is a total subrelation of R and

ran(S) ⊆ Γ ≤∗ Vϵ+1.
It follows from Theorem 4.8 that M satisfies the coding lemma, and the theorem

follows by applying Proposition 4.1 inside M . □

5. The Hartogs number of Vϵ+2

The Hartogs number of a set X, denoted by ℵ(X), is the least ordinal η such that
there is no η-sequence of distinct elements of X. The main theorem of this section
computes the Hartogs number of the even levels of the cumulative hierarchy:

Theorem 5.1. Suppose ϵ is an even ordinal and there is an elementary embedding
from Vϵ+3 to itself. Then ℵ(Vϵ+2) = θϵ+2.

It is easily provable in ZF that ℵ(Vϵ+2) ≥ ℵ∗(Vϵ+1) = θϵ+2, so the main content
of Theorem 5.1 is that there is no θϵ+2-sequence of distinct subsets of Vϵ+1. This
does not follow from the existence of an elementary embedding from Vϵ+2 to itself.

We begin by proving the following weak version of Theorem 5.1.

Proposition 5.2. Suppose ϵ is an even ordinal and there is an elementary j :
Vϵ+3 → Vϵ+3. Then there is no sequence φ⃗ = ⟨φη : η < θϵ+2⟩ such that for all
η < θϵ+2, φη is a surjection from Vϵ+1 onto η.

Proof. Assume towards a contradiction that there is such a sequence. This implies
θϵ+2 is regular by the standard ZFC argument that ℵ∗(X) is regular for any set X.

Let ψ⃗ = j(φ⃗). For any η ∈ j[θϵ+2],

j[θϵ+2] ∩ η = ψη ◦ j[Vϵ+1]

It follows that j[θϵ+2] is the unique ω-closed unbounded subset C ⊆ θϵ+2 such that
for all η ∈ C, C ∩ η = ψη ◦ j[Vϵ+1]; here we use that any other such ω-closed
unbounded set has unbounded intersection with j[θϵ+2], which is a consequence of
the regularity of θϵ+2.

It follows that j[θϵ+2] is definable in Hϵ+3 from j[Vϵ+1] and ψ⃗ ∈ ran(j), which
contradicts Theorem 3.4. □

While we motivated this section with Theorem 5.1, our ulterior motive is to
establish the following bound on definable Lindenbaum numbers, which will be
important in the proof of the bound on the number of ultrafilters given in Theo-
rem 7.1.

Theorem 5.3. Suppose ϵ is an even ordinal and there is an elementary j : Vϵ+3 →
Vϵ+3. Then for any class A, if M is the minimal inner model containing Vϵ+1 such
that A ∩ x ∈M for all x ∈M , then θMϵ+3 < θϵ+2.



CHOICELESS CARDINALS AND THE CONTINUUM PROBLEM 17

For the proof, we need the concept of extenders and their associated ultrapower
embeddings, a subject that requires some extra care if one does not assume the
Axiom of Choice. We will not develop this theory in much generality, but rather
work only in the setting that will be required here, the setting of derived extenders.
Suppose j : M → N is an elementary embedding between transitive sets and
η ≤ sup j[Ord ∩M ]. For each a ∈ [η]<ω, let δa denote the least ordinal δ such that
a ⊆ j(δ). The M -extender of length η derived from j is the sequence

Ej,η = ⟨Ua : a ∈ [η]<ω⟩

where Ua is the M -ultrafilter on [δ]|a| derived from j using a.
For a ∈ [η]<ω, let Ma = Ult(M,Ua) and let ka,N : Ma → N denote the canonical

factor embedding defined by

ka,N ([f ]Ua
) = j(f)(a)

This map is a well-defined, injective homomorphism, but need not be elementary.
If a ⊆ b ∈ [η]<ω, we can define ka,b : Ma →Mb as the composition

ka,b = k−1
b,N ◦ ka,N

noting that ran(ka,N ) ⊆ ran(kb,N ). The ultrapower of M by the derived extender
E = Ej,η is the direct limit ME of the system of ultrapowers

⟨Ma, ka,b : a ⊆ b ∈ [η]<ω⟩

For a ∈ [η]<ω, let ka,E : Ma → ME denote the direct limit map. The ultrapower
embedding associated to E is the map

jE : M →ME

defined by jE = k∅,E . The canonical factor maps ka,N : Ma → N along with the
universal property of the direct limit induce an embedding kE,N : ME → N .

Every element of the structure ME is of the form ka,E([f ]Ua) for some f ∈ M
and a ∈ [η]<ω, and so for ease of notation we denote

[f, a]E = ka,E([f ]Ua)

With this notation, the factor map from ME to N may be expressed as

kE,N ([f, a]E) = j(f)(a)

Taking f equal to the identity, we see that [η]<ω ⊆ ran(kE,N ), so in particular
crit(kE,N ) ≥ η.

Note that the extender E is essentially the same object as the function i :
P ([η]<ω) → N defined by i(A) = j(A) ∩ [η]<ω. If η = ωη, in terms of ordinal
arithmetic, then each element a ∈ [η]<ω can be coded by a single ordinal, namely
ωαn−1 + · · · + ωα0 where ⟨αm⟩m<n is the increasing enumeration of a. Therefore
in this case, the extender E is essentially the same as the sequence of ultrafil-
ters ⟨U{α}⟩α<η, and essentially the same as the function i : P (η) → N given by
i(A) = j(A) ∩ η.

Proof of Theorem 5.3. By enlarging A, we may assume without loss of generality
that j ↾ (Vϵ+3 ∩M) ∈ M . We then have j(Vϵ+2 ∩M) = Vϵ+2 ∩M : on the one
hand, j(Vϵ+2 ∩M) ⊆ Vϵ+2 ∩M since we have ensured j ↾ (Vϵ+3 ∩M) ∈M . For the
reverse inclusion, we use that Vϵ+1 ⊆ j(Vϵ+2 ∩M), and so j ↾ Vϵ ∈ j(Vϵ+2 ∩M),
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which implies that j ↾ Vϵ+1 ∈ j(Vϵ+2 ∩M) by Theorem 3.1. It follows that for all
A ∈ Vϵ+2 ∩M , A ∈ j(Vϵ+2 ∩M), since

A = (j ↾ Vϵ+1)−1(j(A))

and j(A) ∈ j(Vϵ+2 ∩M).
Using Theorem 4.5, fix a sequence ⟨φη : η < θMϵ+2⟩ ∈ M such that φη : Vϵ+1 →

P (η)∩M is a surjection. Note that j ↾ P (η)∩M is uniformly definable from j(φη)
and j[Vϵ] in Hϵ+2 for η < θMϵ+2, and as a consequence j ↾ Pbd(θMϵ+2)∩M is definable

from j(⟨φη : η < θMϵ+2⟩) and j ↾ θMϵ+2 in Hϵ+2. Since θMϵ+2 < θϵ+2, it follows that

j ↾ Pbd(θMϵ+2)∩M is definable in Hϵ+2 from j[Vϵ] and parameters in the range of j.

Let E be the M -extender of length θMϵ+2 derived from j, so E and j ↾ Pbd(θMϵ+2)∩
M are essentially the same object. Let i : θMϵ+3 → θMϵ+3 be the ultrapower associated

to E (using only functions inM). We claim i = j ↾ θMϵ+3. Let k : Ult(θMϵ+3, E) → Ord

be the factor embedding defined by k([f, a]E) = j(f)(a) for a ∈ [θMϵ+2]<ω and f ∈M

a function from an ordinal less than θMϵ+2 into θMϵ+3. We will show that k is the
identity, or equivalently that k is surjective.

Fix ξ < θMϵ+3, and let us show ξ ∈ ran(k). Let R ∈ M be a prewellorder of
Vϵ+2 ∩M of length greater than ξ. Then j(R) ∈ M is a prewellorder of Vϵ+2 ∩M
of length greater than ξ. Fix A ∈ Vϵ+2 ∩M such that rankj(R)(A) = ξ. For each
extensional σ ⊆ Vϵ, let jσ : Vϵ → Vϵ denote the inverse of the transitive collapse
of σ, and assuming jσ is Σ1-elementary, let Aσ ⊆ Vϵ+1 denote the preimage of
A under the canonical extension j+σ : Vϵ+1 → Vϵ+1. Define a partial function
g : Vϵ+1 → θMϵ+3 by g(σ) = rankR(Aσ). Then g ∈ M and j(g)(j[Vϵ]) = ξ. The

ordertype ν of ran(g) is less than θMϵ+2. Let h : ν → ran(g) be the increasing

enumeration. Then h ∈ M is a function from an ordinal less than θMϵ+2 into θMϵ+3,
and since ξ ∈ ran(j(g)) = ran(j(h)), there is some α < j(ν) such that j(h)(α) = ξ.
This shows ξ ∈ ran(k), since ξ = k([h, α]E).

It follows that i = j ↾ θMϵ+3. We claim that j[θMϵ+3] is definable over Hϵ+3 from
j[Vϵ] and parameters in the range of j. If we could show this, then we could conclude
the theorem by appealing to Theorem 3.4 to deduce that θMϵ+3 < θϵ+2. In fact, it

at first seems straightforward to show that j[θMϵ+3] is so definable because it is just
the range of i, and i is the ultrapower embedding associated to the extender E,
which is itself definable in Hϵ+2 from j[Vϵ] and parameters in the range of j since
j ↾ Pbd(θMϵ+2) ∩ M is. The issue, however, is that defining i from E requires a
parameter for the set F defined by

F = {f ∈M : ∃η < θMϵ+2 f : η → θMϵ+3}

and we must show that this parameter is in the range of j.
We will show that j(F) = F . A slight hitch here is that it is not clear at first

that F ∈ Hϵ+3, and therefore it is not obvious that it makes sense to apply j to F
at all. Note, however, that for all ξ < θMϵ+3,

Fξ = {f ∈ F : ran(f) ⊆ ξ}

is in Hϵ+3, since fixing a surjection φ : Vϵ+2 ∩M → ξ in M ,

Fξ = {φ ◦ g : ∃η < θMϵ+2 g ∈ V η
ϵ+2 ∩M}

yielding a surjective function from V η
ϵ+2 ∩ M onto Fξ. We will first show that

j(Fξ) = Fj(ξ).
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This is because

j(Fξ) = {j(φ) ◦ g : ∃η < j(θMϵ+2) g ∈ V η
ϵ+2 ∩ j(M)}

and since j(Vϵ+2 ∩M) = Vϵ+2 ∩M , we have j(θMϵ+2) = θMϵ+2 and V η
ϵ+2 ∩ j(M) =

V η
ϵ+2 ∩M , and since moreover j(φ) ∈ M , we can conclude that j(Fξ) = Fj(ξ) as

desired. Now i ↾ ξ is definable via the ultrapower construction from E and Fξ, and
so i ↾ ξ is definable in Hϵ+3 using j[Vϵ] and parameters in the range of j, and as a
consequence ξ < θϵ+2.

Having shown that an arbitrary ξ < θMϵ+3 must be less than θϵ+2, we can conclude

that θMϵ+3 ≤ θϵ+2. It follows that F ∈ Hϵ+3 after all, and now we can apply the
argument showing j(Fξ) = Fj(ξ) to F . This yields that j(F) = F , and so we can

finally conclude that j[θMϵ+3] is definable over Hϵ+3 from j[Vϵ] and parameters in

the range of j as indicated above. By Theorem 3.4, this implies that θMϵ+3 < θϵ+2,
which proves the theorem. □

Proof of Theorem 5.1. Assume towards a contradiction that ⟨Aα : α < θϵ+2⟩ is a
sequence of distinct subsets of Vϵ+1. Let

A = {(α, x) : α < θϵ+2 and x ∈ Aα}

and let M be the minimal inner model containing Vϵ+1 such that A ∩ x ∈ M for
all x ∈ M . Then A ∈ M since A ⊆ θϵ+2 × Vϵ+1 ∈ M . It follows that ⟨Aα : α <
θϵ+2⟩ ∈M , and so θMϵ+3 ≥ (ℵ(Vϵ+2))M ≥ θϵ+2, contradicting Theorem 5.3. □

The proof of Theorem 5.3 raises a question: if ϵ is even and there is an elementary
embedding i : Vϵ+2 → Vϵ+2, what is the value of θϵ+3 in HODVϵ+1? Let δ =

(θϵ+2)HODVϵ+1 , so δ is the least positive ordinal that is not the surjective image of
an ordinal definable function on Vϵ+1. We will show that

(θϵ+3)HODVϵ+1 = δ+HOD

(To dispel a bit of mystery here, we point out that δ+HOD = δ+HODVϵ+1 since for
any function f : δ → Ord in HODVϵ+1

, there is a function F : δ → [Ord]<δ in
HOD such that f(α) ∈ F (α) for all α < δ.) We will also show that there is an
ordinal definable surjection from δ × Vϵ+1 onto Vϵ+2 ∩ HODVϵ+1

. (This turns out

to be stronger than the result that (θϵ+3)HODVϵ+1 = δ+HOD.) The main interest
here is less in the results that are proved than in their proofs, which constitute the
only successful application to date of ideas from Wadge theory (especially Wadge’s
semi-linear ordering principle) outside the domain of descriptive set theory.

For each ordinal ξ, let Tξ be the satisfaction predicate of Vξ with parameters
from Vϵ+1; we can view Tξ as a subset of Vϵ+1. Since each set in Vϵ+2 ∩HODVϵ+1

is
definable from parameters in the structure (Vϵ+1, Tξ) for some ξ, there is an ordinal
definable surjection from {Tξ : ξ ∈ Ord}×Vϵ+1 onto Vϵ+2 ∩HODVϵ+1 . Therefore to
show that there is an ordinal definable surjection from δ×Vϵ+1 onto Vϵ+2∩HODVϵ+1

,

it suffices to show that |{Tξ : ξ ∈ Ord}|HODVϵ+1 ≤ δ.
Define a binary relation ⪯ on the ordinals by setting ξ0 ⪯ ξ1 if there is an

elementary embedding j : Vϵ+1 → Vϵ+1 such that Tξ0 = j−1[Tξ1 ]. Say an ordinal ξ
is original if for all ν < ξ, ξ ⪯̸ ν. Then the restriction of ⪯ to the original ordinals
is wellfounded, and each original ordinal has fewer than δ original predecessors:
there is an ordinal definable partial surjection from Vϵ+1 to the set of predecessors
of ξ, given by sending an elementary embedding j : Vϵ → Vϵ to the unique original
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ordinal ν ≺ ξ such that Tν = (j+)−1[Tξ], if there is one. Therefore the ⪯ relation
has rank at most δ.

Next we claim that every level of the ⪯ order has cardinality less than κω(i). In
other words, for any α < θ, the set S of original ordinals ξ of rank α in the ⪯ order
has cardinality less than κω(i). By iterating i, we may assume that i(α) = α. Then
i(S) = S. If |S| ≥ crit(i), then there is some ξ ∈ S such that i(ξ) ̸= ξ. But then
Tξ = i−1[Ti(ξ)], and hence ξ ≺ i(ξ), contradicting that ξ and i(ξ) have the same
rank in the ⪯ order.

Since the set of original ordinals carries a wellfounded relation of rank at most
δ each of whose levels has cardinality less than κω(i), there are at most δ original
ordinals. For any ordinal ξ, if ν is the least ordinal such that there is an elementary
embedding j : Vϵ+1 → Vϵ+1 with Tξ = j−1[Tν ], then ν is original. Let Aν be the
set of all Tξ which are equal to j−1[Tν ] for some elementary embedding j : Vϵ+1 →
Vϵ+1. Then |Aν |HODVϵ+1 < δ and {Tξ : ξ ∈ Ord} =

⋃
{Aν : ν is original}. Thus

|{Tξ : ξ ∈ Ord}|HODVϵ+1 ≤ δ, as desired.
Finally, work in HODVϵ+1

, and suppose β < θϵ+3. Then there is a surjection from
δ × Vϵ+1 onto β. It follows that β is the union of δ-many sets, each of cardinality
less than δ, and hence β < δ+.

6. Rank Berkeley and rank reflecting cardinals

A cardinal λ is rank Berkeley if for all ordinals α < λ ≤ β, there is an elementary
embedding from Vβ to itself with critical point between α and λ. The term is due
to Schlutzenberg who noticed that if there is an elementary embedding from the
universe of sets to itself, then there is a rank Berkeley cardinal. (This was realized
independently and earlier by Woodin.)

Indeed, if j : V → V is an elementary embedding with critical point κ, then
we claim λ = sup{κ, j(κ), j(j(κ)), . . . } is rank Berkeley. Assume not, towards a
contradiction, and note that j fixes the lexicographically least pair (α, β) of ordinals
α < λ ≤ β such that Vβ admits no elementary embedding into itself with critical
point between α and λ. Since λ is the least fixed point of j above its critical point κ,
we have α < κ. Therefore j ↾ Vβ witnesses that there is an elementary embedding
from Vβ to itself with critical point between α and λ, contrary to our choice of
(α, β).

We prefer to work with rank Berkeley cardinals rather than elementary embed-
dings from the universe of sets to itself, partly because the former notion is first-
order and seems to capture all of the set-theoretic content of the latter. Another
reason for our preference is that the least rank Berkeley cardinal is an important
threshold in the choiceless theory of large cardinals, as we now explain.

A cardinal κ is supercompact if for all ordinals β ≥ κ, for some ordinal β̄ < κ,
there is an elementary embedding π : Vβ̄ → Vβ such that π(crit(π)) = κ. A cardinal

κ is almost supercompact if for all ordinals ξ < κ ≤ β, for some ordinal β̄ between ξ
and κ, there is an elementary embedding from Vβ̄ into Vβ that fixes ξ. In the context
of ZFC, every almost supercompact cardinal is either a supercompact cardinal or
a limit of supercompact cardinals.

A much weaker notion is that of a rank reflecting cardinal, a cardinal κ such that
for all ordinals ξ < κ and all formulas φ(x) in the language of set theory, if there
is an ordinal β > ξ such that Vβ ⊨ φ(ξ), then there is an ordinal β between ξ and
κ such that Vβ ⊨ φ(ξ). Every almost supercompact cardinal is rank reflecting, and
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every supercompact cardinal is a limit of rank reflecting cardinals. The existence of
a proper class of rank reflecting cardinals is provable in ZF as an easy consequence of
the Lévy-Montague reflection theorem. (See the discussion below Proposition 6.2.)

The following property of reflecting ordinals should be a standard exercise in set
theory, but the author does not know a reference:

Proposition 6.1. If α is an ordinal and κ is the least rank reflecting cardinal above
α, then cf(κ) = ω.

Proof. For every ordinal ξ and every formula φ(x) in the language of set theory, let
βφ,ξ denote the least ordinal β such that Vβ ⊨ φ(ξ). For each ordinal γ, let βγ =
supξ<γ,φ βφ,ξ and let νγ = ot({βφ,ξ : ξ < γ, φ}). If δ0 ≤ δ1, then (νγ)Vδ0 ≤ (νγ)Vδ1

with strict inequality if and only if there is some ξ < γ such that δ0 ≤ βφ,ξ < δ1.
Moreover νγ < γ+ < κ, and so by rank reflection, there is an ordinal δ < γ such
that (νγ)Vδ = νγ . It follows that there is no δ′ > δ such that (νγ)Vδ′ > (νγ)Vδ , and
so there is no ξ < γ such that βφ,ξ ≥ δ. In other words, βγ ≤ δ.

Let κ0 = βα+1, and for n < ω, let κn+1 = βκn
. Then κω = supn<ω κn is a rank

reflecting cardinal and κω ≤ κ, so by minimality, κ = κω. Since κn < κ for all
n < ω by the previous paragraph, cf(κ) = ω. □

The following ZF fact shows that the restriction to ordinal parameters ξ in the
definition of a rank reflecting cardinal can be removed:

Proposition 6.2. If κ is rank reflecting, then for all a ∈ Vκ and all formulas φ(x)
in the language of set theory, if there is an ordinal β > rank(a) such that Vβ ⊨ φ(a),
then there is an ordinal β between rank(a) and κ such that Vβ ⊨ φ(a).

Proof. Fix a set a ∈ Vκ and a formula φ(x) in the language of set theory such that
for some β > rank(a), Vβ ⊨ φ(a). Let ρ = rank(a), and for each a′ ∈ Vρ+1 such
that Vβ ⊨ φ(a′) for some β > ρ, let βa′ = min{β : Vβ ⊨ φ(a′)}. We will show that
βa′ < κ for all a′ ∈ Vρ+1, and for the particular case a = a′ this will establish the
conclusion of the proposition.

Let B = {βa′ : a′ ∈ Vρ+1} and let ν = ot(B). Then ν < θρ+2 < κ; here we use
that rank reflecting cardinals are θ-fixed points in the sense that κ = θκ. Since κ is
rank reflecting, there is an ordinal β between max{ν, ρ} and κ such that ot(B∩β) =
ν. Note that for any a′ ∈ Vρ+1, βa′ < β since otherwise ot(B ∩ (βa′ + 1)) > ν
contradicting the fact that ot(B) = ν. This proves the proposition. □

Note that if κ is an ordinal such that Vκ ⪯Σ2
V , then κ is rank reflecting. In

ZFC, the converse holds since every Σ2-formula φ(x) is equivalent to one of the form
∃β Vβ ⊨ ψ(x) for some formula ψ(x) in the language of set theory. This normal
form for Σ2-formulas is apparently open under ZF, and so the relationship between
these two forms of reflection is unclear.

We will take advantage of the following classification of almost supercompact
cardinals, which shows that rank reflection need not be so much weaker than almost
supercompactness after all:

Theorem 6.3. Let λ denote the least rank Berkeley cardinal.

(1) A cardinal κ ≤ λ is almost supercompact if and only if it is either super-
compact or a limit of supercompact cardinals.

(2) A cardinal κ ≥ λ is almost supercompact if and only if it is rank reflecting.
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Justified by Theorem 6.3, the results of the following sections are stated in terms
of rank reflecting cardinals even though the proofs will employ theorems from [6]
concerning almost supercompact cardinals.

Proof of Theorem 6.3. Any cardinal that is either supercompact or a limit of su-
percompact cardinals is almost supercompact, so we focus on the converse. The
idea of the proof is as follows. For any ordinal ξ, let ηξ denote the least ordinal η
greater than ξ such that for all β ≥ η, there is some β̄ between ξ and η admitting
an elementary embedding π : Vβ̄ → Vβ such that π(ξ) = ξ. Assuming there is
no rank Berkeley cardinal below ηξ, we will show that ηξ is supercompact. Since
any almost supercompact cardinal κ is the supremum of the set {ηξ : ξ < κ}, it
will follow that any almost supercompact cardinal less than or equal to the least
rank Berkeley cardinal is either a supercompact cardinal or a limit of supercompact
cardinals.

Let η = ηξ. We first claim that for all δ < η, for all sufficiently large ordinals
α, there is no ᾱ between ξ and δ admitting an elementary embedding π : Vᾱ → Vα
such that π(ξ) = ξ and δ ∈ ran(π). To see this, let β be the least ordinal such
that for all β̄ between ξ and δ, there is no elementary embedding π′ : Vβ̄ → Vβ
such that π(ξ) = ξ. This ordinal β exists by the minimality of η = ηξ, since we are
assuming that δ < η. Suppose α > β. We will show that there is no ᾱ between
ξ and δ admitting an elementary embedding π : Vᾱ → Vα such that π(ξ) = ξ and
δ ∈ ran(π). Assume towards a contradiction that one can find such an ordinal ᾱ
and such an elementary embedding π. Since Vα satisfies that β is the least ordinal
such that for all for all β̄ between ξ and δ, there is no elementary embedding
π′ : Vβ̄ → Vβ such that π(ξ) = ξ, β is definable in Vα from ξ and δ. Since ξ and

δ belong to the range of π, β belongs to the range of π. Let β̄ = π−1(β). Then
π′ = π ↾ Vβ̄ contradicts the definition of β.

Fix an ordinal α large enough that no cardinal less than η is rank Berkeley in Vα
and for all δ < η, there is no ᾱ between ξ and δ admitting an elementary embedding
π : Vᾱ → Vα fixing ξ with δ ∈ ran(π). Suppose η̄ < ᾱ < η and π : Vᾱ+1 → Vα+1 is
an elementary embedding with π(η̄) = η. We will show that crit(π) = η̄.

We first claim that π[η̄] ⊆ η̄. Otherwise, let δ̄ < η̄ be such that π(δ̄) > η̄. Let
δ = π(δ̄). Since δ < η, our choice of α implies that ᾱ > δ. Since π ↾ Vᾱ ∈ Vα+1 is an
elementary embedding from Vᾱ to Vα with δ = π(δ̄) in its range, the elementarity
of π : Vᾱ+1 → Vα+1 implies that there is some ¯̄α < η̄ admitting an elementary
π̄ : V ¯̄α → Vᾱ with δ̄ ∈ ran(π). Now ¯̄α < η̄ < δ and π ◦ π̄ : V ¯̄α → Vα is an elementary
embedding with δ ∈ ran(π ◦ π̄), contrary to our choice of α.

Assume towards a contradiction that crit(π) < η̄. We will show that in Vα,
there is a rank Berkeley cardinal less than η̄, contrary to our choice of α. Let
ν = crit(π) and γ = sup{ν, π(ν), π(π(ν)), . . . }. Since π[η̄] ⊆ η̄, γ ≤ η̄. Also
since π is discontinuous at η̄ (as π[η̄] ⊆ η̄ while π(η̄) = η), η̄ must have uncountable
cofinality; since γ has countable cofinality, γ < η̄. The proof that γ is rank Berkeley
in Vη̄ is just like the proof that if j : V → V is elementary, then the supremum of its
critical sequence is rank Berkeley: consider the lexicographically least pair (α, β)
with α < γ ≤ β < η̄ such that there is no elementary embedding from Vβ to itself
with critical point between α and γ, and note that π(α) = α and π(β) = β, and
so π ↾ Vβ contradicts the definition of α and β. By elementarity (since π(γ) = γ),
γ is rank Berkeley in Vη, and so since ᾱ ∈ (γ, η), γ is rank Berkeley in Vᾱ. By
elementarity, γ is rank Berkeley in Vα, and this is a contradiction.
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Turning to (2), the fact that almost supercompact cardinals are rank reflecting is
immediate from the definition. Towards the converse, let us make some definitions
and observations.

Fix an ordinal ξ. We define an increasing continuous sequence of ordinals (νi)i<γξ

by letting ν0 be ξ and νi+1 the least ordinal ν greater than νi such that for all ν̄
strictly between ξ and νi, there is no elementary embedding from Vν̄ into Vν that
fixes ξ. The process terminates at stage i if such an ordinal ν does not exist, in
which case γξ = i+ 1.

We claim that γξ is defined, and in fact γξ is less than the least rank Berkeley
cardinal λ. To see this, assume towards a contradiction that the process does not
terminate at any i < λ, so that νλ is defined. Let j : Vνλ

→ Vνλ
be an elementary

embedding fixing ξ whose critical point η is less than λ. Then j ↾ Vνη+1
witnesses

that there is an elementary embedding from Vνη+1 to Vνj(η)+1
that fixes ξ. This

contradicts the definition of νj(η)+1 as an ordinal such that for all ν̄ between ξ and
νj(η)+1, there is no elementary embedding Vν̄ into Vνj(η)+1

that fixes ξ.
Now suppose κ ≥ λ is a rank reflecting cardinal above ξ. Since κ is rank re-

flecting, there is some ordinal β < κ such that Vβ correctly computes γξ. It follows
that Vβ correctly computes (νi)i<γξ

, and hence δ = νγξ−1 is less than κ. But δ has
the property that for all α ≥ δ, there is some ᾱ < δ and an elementary embedding
π : Vᾱ → Vα that fixes ξ. Since ξ < κ was arbitrary, κ is almost supercompact. □

The proof of Theorem 6.3 identifies what might be the correct analog of a su-
percompact cardinal above a rank Berkeley cardinal (as opposed to almost super-
compact cardinals): a cardinal δ such that for all β ≥ δ, there exist δ̄ ≤ β̄ < δ and
an elementary embedding π : Vβ̄ → Vβ such that π[δ̄] ⊆ δ̄ and π(δ̄) = δ. The proof
above shows that, for example, the least almost supercompact above the first rank
Berkeley cardinal is a limit of such cardinals.

In order to state our theorems (particularly Theorem 7.2) in terms of rank re-
flection, we need to improve some of the large cardinal results from [6]. These
involve analyzing the closure or completeness of embeddings associated with an
almost supercompact cardinal. If X is a set, a cardinal λ is X-closed rank Berkeley
if for all ordinals α < λ ≤ β, there is an elementary embedding j : Vβ → Vβ with
α < crit(j) < λ and j(X) = j[X]. A cardinal κ is X-closed almost supercompact
if for all ordinals ξ < κ ≤ β, for some ordinal β̄ between ξ and κ and some set
X̄ ∈ Vβ̄ , there is an elementary embedding π : Vβ̄ → Vβ such that π(ξ) = ξ and

π[X̄] = π(X̄) = X.
The Scott ordinal of a set X, denoted by scott(X), is the least rank of a set Y

that is in bijection with X. The proof of the following proposition is exactly like
that of Theorem 6.3, using Proposition 6.2 to handle the parameter X.

Proposition 6.4. If λ is X-closed rank Berkeley, κ ≥ λ is rank reflecting, and
scott(X) < κ, then κ is X-closed almost supercompact. □

The next lemma is an improvement of [6, Lemma 2.11].

Lemma 6.5. If λ is X-closed rank Berkeley and κ ≥ λ is rank reflecting, then
scott(X) < κ.

Proof. We may assume that κ is the least rank reflecting cardinal greater than or
equal to λ. Let S be the set of Scott ordinals of subsets of X. Then there is an
elementary embedding j : Vα → Vα such that j(S) = j[S], and hence |S| < λ.
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Let β = rank(X). By the proof of Theorem 6.3, one can find an ordinal β̄
between λ and κ, a set X̄ ∈ Vβ̄+1, and an elementary embedding π : Vβ̄+1 → Vβ+1

with crit(π) > |S| and π(X̄) = X.
Let S̄ denote the set of Scott ordinals of subsets of X̄. Note that S̄ ⊆ S since

every set A ⊆ X̄ is in bijection with π[A], which is a subset of X. But π[S̄] = S
since π(S̄) = S and crit(π) > |S|. It follows that π(ν) = ν for all ν ∈ S̄. In
particular,

scott(X) = π(scott(X̄)) = scott(X̄) < κ □

As an immediate corollary of Proposition 6.4 and Lemma 6.5, we obtain:

Corollary 6.6. If λ is X-closed rank Berkeley and κ ≥ λ is rank reflecting, then
κ is X-closed almost supercompact. □

7. The number of ultrafilters on an ordinal

If X is a set and κ is a cardinal, then βκ(X) denotes the set of κ-complete
ultrafilters on X. The main theorem of this section bounds the size of this set
when X is an ordinal:

Theorem 7.1. Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and ϵ ≥ κ is
an even ordinal. Then for all η < θϵ, |βκ(η)| < θϵ.

This should be contrasted with the following fact [6, Theorem 4.14], which com-
bined with Theorem 7.11 implies that βκ(η) is quite large:

Theorem 7.2. Suppose λ is rank Berkeley and κ ≥ λ is rank reflecting. Then
every κ-complete filter on an ordinal extends to a κ-complete ultrafilter.

In the context of ZFC, if every κ-complete filter on an ordinal extends to a κ-
complete ultrafilter, then κ is strongly compact, and in particular for all cardinals
η of cofinality at least κ, |βκ(η)| = 22

η

. Theorem 7.1 tells a very different story.
[6, Theorem 4.14] is actually proved assuming a stronger large cardinal hypoth-

esis on κ than rank reflection (or equivalently almost supercompactness, see Theo-
rem 6.3), though it is shown in [6, Theorem 2.9] this stronger hypothesis also holds
at a closed unbounded class of cardinals κ. The assumption is that κ is X-closed
almost extendible for all sets X such that λ is X-closed rank Berkeley. To prove
Theorem 7.2 as it is stated here, one observes that the proof can be carried out
assuming only that κ is X-closed almost supercompact for all sets X such that λ
is X-closed rank Berkeley, and to obtain this, one appeals to Corollary 6.6.

The tendency of sufficiently complete ultrafilters on ordinals to behave like ordi-
nals themselves is the key to the results of this section. The following theorem [6,
Lemma 3.6] is one example of this behavior:

Theorem 7.3. Suppose λ is rank Berkeley and κ ≥ λ is rank reflecting. Then for
all η ≥ κ, βκ(η) is wellorderable. □

Lemma 7.4. Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and ϵ ≥ κ is
an even ordinal. Then for all η < θϵ+2 and all surjections φ : Vϵ+1 → η, there
is a wellordered sequence F ∈ HODVϵ+1,φ of subsets of P (η) with the following
properties:

(1) Every U ∈ βκ(η) extends some B ∈ F .
(2) For each B ∈ F , |{U ∈ βκ(η) : B ⊆ U}| < λ.
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The proof involves an ordering of ultrafilters called the Ketonen order, whose
behavior under choiceless large cardinal hypotheses partly explains the ordinal-like
behavior of complete ultrafilters in this context. Because this order is really the
key to Lemma 7.4, we give the definition of the Ketonen order and state some of
its basic properties here.

An ultrafilter U is wellfounded if the ultrapower of any wellfounded structure
by U is wellfounded; this is equivalent to the statement that the ultrapower of any
wellorder by U is again a wellorder. For each ordinal η, let B(η) denote the set of
wellfounded ultrafilters on η. Of course, assuming DC, an ultrafilter is wellfounded
if and only if it is countably complete. In the context of choiceless cardinals, we
must make do with the following analogous result [6, Lemma 3.6]:

Theorem 7.5. If κ is almost supercompact and U ∈ βκ(η), then U is wellfounded.
□

Of course, much would be simplified by assuming DC, which feels harmless in
this context.

The Ketonen order is defined on B(η) by setting U <k W if there is a set I ∈W
and a sequence ⟨Uα⟩α∈I ∈

∏
α∈I B(α) such that for all A ∈ U , {α ∈ I : A ∩ α ∈

Uα} ∈ W . The Ketonen order is wellfounded, and this is a theorem of ZF [6,
Theorem 4.2].

If j is an elementary embedding, let Fix(j) denote the set of ordinals fixed by j.

Lemma 7.6. Suppose j : Vϵ+3 → Vϵ+3 is an elementary embedding, η < θϵ+2, and
U ∈ B(η) has Ketonen rank ξ. If j(ξ) = ξ and j(η) = η, then j(U) = U and
Fix(j) ∩ η ∈ U .

Proof. Let I = η \ Fix(j) be the set of ordinals α < η such that j(α) > α, and
for α ∈ I, let Dα = {A ⊆ α : α ∈ j(A)}. We will show that I /∈ j(U). Assume
towards a contradiction that I ∈ j(U). Then U <k j(U), since for all A ∈ U ,
{α ∈ I : A ∈ Dα} = j(A) ∩ I ∈ j(U). But this contradicts that j(U) has rank ξ in
the Ketonen order, so it cannot have a predecessor that also has rank ξ.

Therefore I /∈ U , and hence its complement Fix(j) ∩ η ∈ j(U). From this it
follows that U = j(U): for each A ∈ U , j(A) ∩ Fix(j) ∈ j(U), but j(A) ∩ Fix(j) =
A∩Fix(j) ⊆ A, so A ∈ j(U). This shows that U ⊆ j(U), but since U and j(U) are
proper filters on η, it follows that U = j(U). □

Despite its simplicity, this result has nontrivial consequences.

Proposition 7.7. Suppose ϵ is an even ordinal and there is an elementary embed-
ding j : Vλ+3 → Vλ+3. If U is a wellfounded ultrafilter on an ordinal η < θϵ+2, then
Ult(η, U) < θϵ+2.

Proof. By iterating j, we may assume that j fixes both η and the Ketonen rank of
U , and hence j(U) = U and Fix(j) ∈ U . Then for any f : η → η,

j([f ]U ) = [j(f)]U = [j ◦ f ]U

with the final equality holding because j(f) ↾ Fix(j) = (j ◦f) ↾ Fix(j) and Fix(j) ∈
U . It follows that j ↾ Ult(η, U) is definable over Hϵ+3 from j ↾ η and parameters
in the range of j; namely, j(U) = U . Since η < θϵ+2, Theorem 3.4 and Lemma 3.3
now combine to yield Ult(η, U) < θϵ+2. □
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Note that Proposition 7.7 is a special case of our main result that θϵ+2 is a strong
limit cardinal since Ult(η, U) ≤∗ P (η).

We will also appeal to yet another result from [6]:

Theorem 7.8 ([6, Theorem 3.12]). Suppose κ and η are ordinals, U is a nonprin-
cipal normal fine ultrafilter on P (η), and F ∈ U is a κ-complete filter. Suppose
there is a wellfounded κ+U -complete fine ultrafilter on P (P (η)) that concentrates on
the set of σ ∈ P (P (η)) such that ℵ(P (σ)) < κ. Then η can be partitioned into
fewer than κU -many atoms of F . □

The author of [6] has an unfortunate tendency to state theorems under the most
general hypotheses possible, favoring combinatorial notions like fine ultrafilters over
more intuitive concepts like elementary embeddings, regardless of its effect on the
readability of his paper. For this reason, we are forced to state what is hopefully a
more comprehensible corollary to this theorem:

Corollary 7.9. Suppose λ is the least rank Berkeley cardinal and κ ≥ λ is rank
reflecting. Suppose η is an ordinal and F is a κ-complete filter on η such that for
some ordinal α > η, for any elementary embedding j : Vα → Vα, j[η] ∈ j(F ). Then
η can be partitioned into fewer than λ-many atoms of F .

Proof. We verify that the hypotheses of Theorem 7.8 hold for F .
Since λ is rank Berkeley, there is an elementary embedding j : Vα → Vα with

critical point ν < λ such that λ = sup{ν, j(ν), j(j(ν)), . . . }. Note that F belongs
to the normal fine ultrafilter U on P (η) derived from j because U is the set of
B ⊆ P (η) such that j[η] ∈ j(B), and by assumption j[η] ∈ j(F ).

To finish the proof, we just need to prove that there is a wellfounded ν+-complete
fine ultrafilter on P (P (η)) that concentrates on the set of σ ∈ P (P (η)) such that
ℵ(P (σ)) < κ. This uses the fact that the embeddings witnessing that κ is almost
supercompact may be taken to have critical point arbitrarily large below λ, which
follows from the proof of Theorem 6.3 (or alternatively is a direct consequence of
[6, Lemma 2.7]).

Now let γ be a rank reflecting ordinal above α and let π : Vγ̄ → Vγ be an
elementary embedding with γ̄ < κ, crit(π) > ν, and {η, κ} ⊆ ran(π). Let η̄ =
π−1(η) and κ̄ = π−1(κ). Let W̄ be the ultrafilter on P (P (η̄)) derived from π using
π[P (η̄)]. In Vγ̄ , W̄ is a wellfounded ν+-complete fine ultrafilter on P (P (η)) that
concentrates on the set of σ ∈ P (P (η)) such that ℵ(P (σ)) < κ̄. The wellfoundedness
of W in Vγ̄ follows from the fact that the ultrapower of any ordinal β < γ̄ by W
embeds into π(β) and is therefore wellfounded. That W concentrates on the set of
σ ∈ P (P (η)) such that ℵ(P (σ)) < κ̄ follows from the fact that, letting σ = π[P (η̄)],
ℵ(P (σ)) = ℵ(P (P (η̄))) < κ.

Letting W = π(W̄), we have that in Vγ , W is a wellfounded ν+-complete fine
ultrafilter on P (P (η)) that concentrates on the set of σ ∈ P (P (η)) such that
ℵ(P (σ)) < κ. Since γ was chosen to be rank reflecting, it follows that W is truly
wellfounded, which concludes the proof of the corollary. □

Proof of Lemma 7.4. For each ordinal α, let Eα denote the set of elementary em-
beddings from Vα to itself. For ξ < θϵ+3, let

Bξ = {j[η] : j ∈ Eϵ+3, φ ∈ j[Hϵ+2], j(ξ) = ξ, and j(η) = η}
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We let F = ⟨Bξ⟩ξ<θϵ+3
. Note that F is ODφ. Also, each Bξ is a subset of

HODVϵ+1,φ: for j ∈ Eϵ+3 with φ ∈ j[Hϵ+2], j[η] = ran(φ ◦ j+), and j+ is definable
over Vϵ+1 by Theorem 3.1. It follows that F ∈ HODVϵ+1,φ.

By Lemma 7.6, if U ∈ βκ(η) has Ketonen rank ξ, then Bξ ⊆ U . This shows (1).
For any j : Vϵ+4 → Vϵ+4 such that j(ξ) = ξ and j(η) = η, we have j[η] ∈ j(Bξ)

since

j(Bξ) = {i[η] : i ∈ Eϵ+3, j(φ) ∈ i[Hϵ+2], i(ξ) = ξ, and i(η) = η}
and taking i = j ↾ Vϵ+3, we obtain that j[η] = i[η] ∈ j(Bξ) by Lemma 7.6.

Let Fξ be the intersection of all κ-complete ultrafilters extending Bξ. By Corol-
lary 7.9, there is a partition P of η into atoms of Fξ with |P| < λ. It follows that
for each A ∈ P, Bξ ∪ {A} extends uniquely to an element of βκ(η), namely the
ultrafilter U generated by Fξ ∪ {A}. To see this, let U ′ be a κ-complete ultrafilter
extending Bξ ∪ {A}. Since Bξ ⊆ U ′, Fξ ⊆ U ′, and hence Fξ ∪ {A} ⊆ U ′, which
implies that U ′ = U .

As a consequence, |{U ∈ βκ(η) : B ⊆ U}| = |P| < λ, establishing (2). □

Proof of Theorem 7.1. Fix a family F as in Lemma 7.4. In M = HODVϵ+1,φ, F is a
wellordered family of subsets of P (η) and P (η) ≤∗ Vϵ+1 by Theorem 4.5. Therefore
|F | < θMϵ+3. By Theorem 5.3, θMϵ+3 < θϵ+2. Fix an enumeration ⟨Bα⟩α<|F | of F .
For α < |F |, let Uα = {U ∈ βκ(η) : Bα ⊆ U}, so that |Uα| < λ for all α < |F |.
Then βκ(η) =

⋃
α<|F | Uα, and so, appealing to Theorem 7.3,

|βκ(η)| ≤ |F | · λ < θϵ+2 □

We remark that the results of this section (especially Lemma 7.4) take advantage
of a very simple almost everywhere approximation to the (local) Moschovakis coding
lemma: if ϵ is an even ordinal and φ : Vϵ+2 → η is a surjection, then for any normal
fine Jonsson ultrafilter U on Vϵ+1, if W is the projection of U to P (η), then W-almost
every A ⊆ η is Σ1-definable in the codes over (Vϵ+1,≺) where ≺ is the prewellorder
induced by φ. Theorem 7.1 can be seen as combining this almost everywhere local
coding lemma with the coarse coding lemma of Section 4 to obtain a coding lemma
for ultrafilters.

For the proof of our main theorem, Theorem 8.1, we require a further bound on
the cardinality of the set of ultrafilters in the context of Theorem 7.1 but without
the restriction to κ-complete ultrafilters.

If U is an ultrafilter on a set X and h and g are functions on X, write h ⊑U g if
there is a function e such that h(x) = e ◦ g(x) for U -almost all x ∈ X.

Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and η ≥ κ is an ordinal.
Our first lemma allows us to code any κ-wellfounded ultrafilter on η as a pair
(D,F ) where D is an ultrafilter on an ordinal less than κ and F is a κ-complete
filter. (Recall from [6] that an ultrafilter U is γ-wellfounded if the ultrapower of
the ordinal γ by U is wellfounded.)

Lemma 7.10. Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and U is a
κ-wellfounded ultrafilter on an ordinal η.

(1) There is a function g that is ⊑U -maximal among all bounded functions from
η to κ.

(2) Letting D = g∗(U) and k : Ult(P (η), D) → Ult(P (η), U) be the factor em-
bedding, the Ult(P (η), D)-ultrafilter B derived from k using [id]U generates
a κ-complete filter.
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This lemma is a choiceless version of a theorem of Silver [20] on the existence of
finest partitions for indecomposable ultrafilters.

We will use the wellordered collection lemma [6, Corollary 2.22].

Theorem 7.11. Suppose λ is rank Berkeley and κ ≥ λ is rank reflecting. Then
for any family F of nonempty sets with |F| < κ, there is a sequence ⟨ax : x ∈ Vκ⟩
such that for all A ∈ F , there is some x ∈ Vκ with ax ∈ A. □

Proof of Lemma 7.10. In our applications, we will only need the special case of the
lemma in which κ is the least rank reflecting cardinal greater than or equal to λ,
and then cf(κ) = ω by Proposition 6.1. In general, we can reduce the lemma to the
special case in which κ has cofinality ω. Otherwise, κ is a limit of rank reflecting
cardinals of cofinality ω, and one obtains the result by applying the lemma to these
smaller cardinals using a regressive function argument. Specifically, for each rank
reflecting ρ < κ, let βρ = [h]U where h is a ⊑U -maximal bounded function from
η to ρ; note that βρ does not depend on the choice of h. The function ρ 7→ βρ
is a monotone regressive function on the closed unbounded set of rank reflecting
cardinals below κ, and therefore it is eventually constant. If γ < κ is large enough
that βρ = βρ′ for all rank reflecting cardinals between γ and κ, then letting g be
a ⊑U -maximal bounded function from η to the least rank reflecting cardinal above
γ, g easily satisfies (1) and (2).

So let us establish (1) and (2) assuming cf(κ) = ω. We begin with (1). Using
the wellordered collection lemma (Theorem 7.11), fix functions ⟨fx : x ∈ Vκ⟩ from
η to κ such that for each α < κ, there is some x ∈ Vκ such that α = [fx]U . Then
define g : η → κVκ by g(ξ) = ⟨fx(ξ) : x ∈ Vκ⟩.

For any ν < κ and h : η → ν, there is some x ∈ Vκ such that for U -almost all
ξ < η, h(ξ) = fx(ξ) = evx ◦ g(ξ) where evx : g[η] → κ is given by evx(s) = s(x). To
finish, it suffices to show that there is some A ∈ U such that |g[A]| < κ.

We claim ℵ(Vκ+1) = κ+. [6, Theorem 3.13] implies that κ+ is measurable. The
proof that successor cardinals cannot be measurable under the Axiom of Choice
shows in the ZF context that if a set X carries a nonprincipal ultrafilter that is
closed under Y -indexed intersections, then there is no injection from X to P (Y ).
Since κ is rank reflecting, κ = θκ, and so any κ+-complete ultrafilter on κ+ is
closed under Vκ-indexed intersections by [6, Lemma 3.5]. It follows that there is no
injection from κ+ to P (Vκ) = Vκ+1, and hence ℵ(Vκ+1) = κ+.

Since ℵ(Vκ+1) = κ+, |g[η]| ≤ κ. Since cf(κ) = ω and U is countably complete,
|g[A]| < κ for some A ∈ U .

We now turn to (2). Fix g as in (1). We will use the following characterization
of B: if f : ν → P (η), then [f ]D ∈ B if and only if for U -almost every ξ < η,
ξ ∈ f ◦ g(ξ). This is because [f ◦ g]U = k([f ]D), so U -almost every ξ belongs to
f ◦ g(ξ) if and only if [id]U ∈ k([f ]D); that is, [f ]D is in the ultrafilter derived from
k using [id]U .

Suppose γ < κ and ⟨Aβ⟩β<γ belong to the filter generated by B. We will show
that there is a set A ∈ B such that A ⊆

⋂
ξ<γ Aξ. This shows that the filter

generated by B is κ-complete.
Applying the wellordered collection lemma (Theorem 7.11), let ⟨fx : x ∈ Vκ⟩ be

functions representing sets in B such that for all β < γ, there is some x ∈ Vκ such
that [fx]D ⊆ Aβ . Let h : η → Vκ+1 be the function

h(ξ) = {x ∈ Vκ : ξ ∈ fx ◦ g(ξ)}
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For all x ∈ Vκ, the fact that [fx]D ∈ B implies that for U -almost all ξ < η,
x ∈ h(ξ). Since ℵ(Vκ+1) = κ+, |h[η]| ≤ κ, and so since g is ⊑U -maximal, there is
some e : ν → Vκ+1 such that e ◦ g(ξ) = h(ξ) for U -almost all ξ. For all x ∈ Vκ,
since x ∈ h(ξ) for U -almost all ξ < η, x ∈ e(α) for D-almost all α < κ.

Define f : κ→ P (η) by setting

f(α) =
⋂

x∈e(α)

fx(α)

and let A = [f ]D. For all x ∈ Vκ, for D-almost all α < κ, f(α) ⊆ fx(α), and hence
A ⊆ [fx]D. This means A ⊆

⋂
β<γ Aβ .

Finally, we claim A ∈ B. To see this, note that by the definition of h, for all
ξ < η, ξ ∈

⋂
x∈h(ξ) fx ◦ g(ξ). By our choice of e, for U -almost all ξ < η,

f ◦ g(ξ) =
⋂

x∈e◦g(ξ)

fx ◦ g(ξ) =
⋂

x∈h(ξ)

fx ◦ g(ξ)

Hence for U -almost all ξ < η, ξ ∈ f ◦ g(ξ), which means that A = [f ]D ∈ B. □

Corollary 7.12. If λ is rank Berkeley, κ ≥ λ is rank reflecting, and U is a κ-
wellfounded ultrafilter on an ordinal, then U is wellfounded.

Proof. Let (D,B) decompose U as in Lemma 7.10. Note that D ∈ Vκ and D is
wellfounded in Vκ, so D is wellfounded by rank reflection. The wellfoundedness
of D, along with Lemma 7.10, implies that B generates a κ-complete filter on an
ordinal, and so applying Theorem 7.2, B extends to a κ-complete ultrafilter W .
Note that by Theorem 7.5, W is wellfounded.

There is an order-preserving embedding

e : Ult(Ord, U) → Ult(Ord,W )

defined by e([f ]U ) = [jD(f)]W , so U is wellfounded because W is. □

Corollary 7.13. Assume λ is rank Berkeley, κ ≥ λ is rank reflecting, and ϵ ≥ κ
is even. Then for any η < θϵ+2, there is a surjection from Vϵ+1 onto B(η).

Proof. We may assume κ is the least rank reflecting cardinal above λ, so that
cf(κ) = ω by Proposition 6.1. Let B denote the set of wellfounded ultrafilters on
ordinals less than κ, and let

γ = sup{Ult(η,D) : D ∈ B}
We claim that γ < θϵ+2. Let S = {Ult(η,D) : D ∈ B}, so that γ = sup(S).

By Proposition 7.7, S ⊆ θϵ+2, so it suffices to show that S is bounded below θϵ+2.
But S is the union of the sets Sα = {Ult(η,D) : D ∈ B(α)} for α < η, and
|Sα| < θα+2 < κ. Therefore |S| ≤ κ. By [6, Corollary 2.17], cf(θϵ+2) ≥ κ, and since
cf(κ) = ω, the inequality is strict. Therefore γ = sup(S) < θϵ+2.

Consider the function p : B × βκ(γ) → B(η) defined by p(D,W ) = j−1
D [W ]. We

claim that p is surjective. To see this, fix U ∈ B(η). By Lemma 7.10, let g : η → κ
be the ⊑U -maximal bounded function, let D = g∗(U), let k : Ult(P (η), D) →
Ult(P (η), U) be the factor embedding, and let B be the Ult(P (η), D)-ultrafilter
on Ult(η,D) derived from k using [id]U . Then by Lemma 7.10, B generates a
κ-complete filter F on Ult(η, U), and by Theorem 7.2, F extends to a κ-complete
ultrafilter W on Ult(η, U). Now

U = j−1
D [B] = j−1

D [W ] = p(D,W )
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Since |βκ(γ)| < θϵ+2 by Theorem 7.1, βκ(γ) ≤∗ Vϵ+1. Moreover, we have B ⊆
Vκ ≤∗ Vϵ+1. Therefore

B(η) ≤∗ B × βκ(γ) ≤∗ Vϵ+1 × Vϵ+1 ≤∗ Vϵ+1

which proves the theorem. □

The proof above actually produces a surjection from Vκ × ρ onto B(η) for some
ordinal ρ < θϵ+2.

8. Periodicity in the Lindenbaum numbers

We finally come to the main theorems of this paper. We first show that suffi-
ciently large even Lindenbaum numbers are strong limit cardinals. In fact, we will
show:

Theorem 8.1. Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and ϵ ≥ κ is
an even ordinal. Then θϵ is a strong limit cardinal.

Proof. For simplicity, we will just prove that if ϵ ≥ κ is even, then θϵ+2 is a strong
limit cardinal; that limit Lindenbaum numbers are strong limit cardinals is estab-
lished by Lemma 2.1. Fix an ordinal η < θϵ+2 and (applying Corollary 7.13) a
surjection f : Vϵ+1 → η × B(η). Let j : Vϵ+3 → Vϵ+3 be an elementary embedding
such that j(η) = η and f ∈ j[Hϵ+3].

We claim that j ↾ P (η) is definable over Hϵ+3 from j ↾ Vϵ and parameters in the
range of j. For α < η, let

Uα = {A ⊆ η : α ∈ j(A)}

be the ultrafilter on η derived from j using α. It suffices to show that the sequence
E = ⟨Uα⟩α<η (which is essentially the extender of length η derived from j) is
definable over Hϵ+3 from j ↾ Vϵ and parameters in the range of j, since j and E
are interdefinable:

j(A) = {α < η : A ∈ Uα}
Note that E, or perhaps more precisely the graph of E, is a subset of η ×B(η).

(Here it is important that every ultrafilter of E is wellfounded, which follows from
Corollary 7.12.) Let A ⊆ Vϵ+1 be the preimage of E under the surjection f : Vϵ+1 →
η × B(η). Then A = (j ↾ Vϵ+1)−1[j(A)] is definable from j[Vϵ] and j(A) in Vϵ+3,
using Theorem 3.1. Finally, E = f [A] is definable from A and f in Hϵ+3. Since
f ∈ j[Hϵ+3] and A is definable in Hϵ+3 from j[Vϵ] and parameters in the range of
j, it follows that E is definable in Hϵ+3 from j[Vϵ] and parameters in the range of
j, as claimed.

It now follows from Theorem 3.4 and Lemma 3.3 that P (η) does not surject onto
θϵ+2: if it did, then by Lemma 3.3, j[θϵ+2] would be definable in Hϵ+3 from j ↾ P (η)
and parameters in the range of j, and hence by our claim, j[θϵ+2] would be definable
in Hϵ+3 from j[Vϵ] and parameters in the range of j, contrary to Theorem 3.4. □

We now prove our main theorem on odd Lindenbaum numbers. The following
fact is implicit in the proof of Theorem 5.3.

Lemma 8.2. Suppose ϵ is an even ordinal and j : Vϵ+1 → Vϵ+1 is an elementary
embedding. Let E be the extender of length θϵ derived from j. Then jE(A) = j(A)
for any bounded subset A of θϵ+1. □
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Theorem 8.3. If λ is rank Berkeley, κ ≥ λ is rank reflecting, and ϵ ≥ κ is an
even ordinal, then there is a surjection from P (θϵ) onto θϵ+1.

Proof. Again, for simplicity, having handled the case that ϵ is a limit ordinal in
Lemma 2.1, let us just show that for all even ϵ ≥ κ, there is a surjection from P (θϵ+2)
onto θϵ+3. Since βκ(<θϵ+2) =

⋃
η<θϵ

βκ(η) is wellorderable by Theorem 7.3, and

|βκ(η)| < θϵ+2 for all η < θϵ+2 by Theorem 7.1, |βκ(<θϵ+2)| = θϵ+2. Following the
proof of Corollary 7.13, there is a surjection from Vϵ+1×θϵ+2 onto B =

⋃
η<θϵ

B(η).
Fix such a surjection f : Vϵ+1 × θϵ+2 → B.

Let j : Vϵ+3 → Vϵ+3 be an elementary embedding such that j(κ) = κ and
f ∈ ran(j). Let E be the extender of length θϵ+2 derived from j. Following the
proof of Theorem 8.1, one can show that E is definable in Hϵ+3 from j[Vϵ ∪ θϵ+2]
and parameters in the range of j. By Lemma 8.2, it follows that j[θϵ+3] is definable
over Hϵ+3 from j[Vϵ∪θϵ+2] and parameters in the range of j. By Theorem 3.4, this
implies that there is a surjection from P (Vϵ ∪ θϵ+2) onto θϵ+3, and hence there is a
surjection g : Vϵ+1 × P (θϵ+2) → θϵ+3.

For each S ∈ P (θϵ+2), let TS = {g(x, S) : x ∈ Vϵ+1}. Note that TS is the
surjective image of Vϵ+1, and so ot(TS) < θϵ+2. Let fS : ot(TS) → TS be the
increasing enumeration. Then define a partial surjection

f : P (θϵ+2) × θϵ+2 → θϵ+3

by setting f(S, ξ) = fS(ξ) if ξ < ot(TS). We now have:

θϵ+3 ≤∗ P (θϵ+2) × θϵ+2 ≤∗ P (θϵ+2) □

We include one last theorem on the size of the odd Lindenbaum numbers. We
would like to show that these must be the successors of the even ones, but all we
can currently show is that there are not too many regular cardinals in between.

Corollary 8.4. If ϵ is an even ordinal and j : Vϵ+1 → Vϵ+1 is an elementary
embedding with critical point κ, then the set of regular cardinals in the interval
(θϵ, θϵ+1) has cardinality less than κ.

Proof. The set R of regular cardinals in the interval (θϵ, θϵ+1) does not have cardi-
nality exactly κ since |R| is definable over Hϵ+1 while κ, being the critical point of
the elementary embedding j : Hϵ+1 → Hϵ+1, is not.

Assume towards a contradiction |R| > κ and that δ is the κ-th regular cardinal
in the interval (θϵ, θϵ+1). Since j : Hϵ+1 → Hϵ+1 is elementary, j(δ) is the j(κ)-th
regular cardinal in the same interval.

Let E be the extender of length θϵ derived from j. Then j(δ) = jE(δ), and jE is
continuous at δ since each measure of E lies on a cardinal smaller than δ. It follows
that j(δ) has cofinality δ, which contradicts that j(δ) is a regular cardinal larger
than δ. □

9. Questions

Assume there is an elementary embedding from the universe of sets to itself.

Question 9.1. For sufficiently large even ordinals ϵ, is θϵ+1 = θ+ϵ ?

This is probably the most glaring question left open by our theorems here. But
many other combinatorial questions remain:
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Question 9.2. For sufficiently large even ordinals ϵ, if η < θϵ+2, is there a surjection
from Vϵ+1 onto P (η)? Does the coding lemma hold?

Define a sequence of ordinals ⟨να : α ∈ Ord⟩ by setting να+1 = ℵ∗(P (να)) and
νγ = supα<γ να for γ a limit ordinal. The arguments of this paper show that if
there is an elementary embedding from the universe of sets to itself, then να is a
strong limit cardinal for all sufficiently large ordinals α.

Question 9.3. Is θγ+2n = νγ+n for all sufficiently large limit ordinals γ and all
n < ω?

The various formulations of the generalized continuum problem, equivalent under
the Axiom of Choice, come apart when AC is dropped. Under choiceless large
cardinal hypotheses, some of these variants may turn out to be just as interesting
as the ones studied here, although currently there seems to be no way to approach
them:

Question 9.4. Suppose ϵ is a sufficiently large even ordinal and A ⊆ Vϵ+1. If there
is no surjection from Vϵ onto A, must |A| = |Vϵ+1|?

On the one hand, it is hard to believe this could be provable from choiceless large
cardinal hypotheses since it would imply that there is a bijection between Vϵ+1 and
P (θϵ), while it seems more likely to be consistent with choiceless large cardinals
that there is a set that is not the surjective image of the powerset of any ordinal.
On the other hand, results of [21] show that it is consistent with choiceless large
cardinals that every set is the surjective image of the powerset of an ordinal. Maybe
a better question is whether the answer to Question 9.4 is consistently positive.

Certain arguments in this paper require simulating the Axiom of Choice using
rank reflecting cardinals, and for this reason, the following question remains open:

Question 9.5. If λ is rank Berkeley — or just assuming there is an elementary
embedding from Vλ+2 to itself — is θλ+2 a strong limit cardinal?

It is natural to speculate that perhaps the right higher-order generalization of the
Axiom of Determinacy is some kind of regularity property for subsets of Vω+2n+1

for n < ω.

Question 9.6. Is there an extension of the Axiom of Determinacy that implies θω+4

is a strong limit cardinal and θω+5 is its successor? Is this theory even consistent
with the Axiom of Determinacy? If θω+2 is a strong partition cardinal, does this
hold?
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