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APPLICATIONS OF THE MAGIDOR ITERATION TO
ULTRAFILTER THEORY

TOM BENHAMOU AND GABRIEL GOLDBERG

ABSTRACT. We characterize sums of normal ultrafilters after the Magi-
dor iteration of Prikry forcings over a discrete set of measurable cardi-
nals. We apply this to show that the weak Ultrapower Axiom is not
equivalent to the Ultrapower Axiom. We also construct a non-rigid ul-
trapower and two uniform ultrafilters on different cardinals that have
the same ultrapower.

1. INTRODUCTION

Iterated Prikry forcing was first introduced by Magidor [11] in his seminal
“study on identity crises” to produce a model of ZFC in which the least
measurable cardinal is strongly compact. The rough idea is to iteratively
singularize each cardinal « in some set of measurable cardinals A using the
Prikry forcing associated with a normal measure on a.

Ben-Neria [1] was the first to notice that if Magidor’s construction is
carried out over the core model K, then the normal ultrafilters of the forcing
extension can be classified in terms of the normal ultrafilters of K. Recently,
Ben-Neria’s work was substantially extended and generalized by Kaplan [9],
who showed, most significantly, that the classification could be carried out
even when the ground model is not the core model.

This paper is focused on the special case of Magidor’s construction in
which the set of measurable cardinals A to be singularized is discrete in
the sense that it does not contain any of its limit points. In this restricted
setting, the forcing can be viewed as a product of Prikry forcings which
we will refer to as the Magidor product. For discrete Magidor products,
Kaplan’s theorem can be stated as follows:

Theorem 1.1 (Kaplan). Suppose G is V -generic for a Magidor product of
Prikry forcings on a discrete set A C k. Then every normal measure U on
K in'V generates a normal ultrafilter U* in V[G]. Moreover jy- | V =iojy,
where i is an iterated ultrapower of Vi.
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Here and below,
jU V= VU

denotes the ultrapower of the universe of sets by U.

This paper addresses the question of whether Theorem 1.1 can be gener-
alized to ultrafilters U that are not normal. Although we do prove a slight
generalization of Kaplan’s result to a collection of measures we call mild (see
3.8), the more surprising contribution of this paper is a negative answer to
the general question: we show in Section 4 that in the context of Theorem
1.1, a k-complete ultrafilter U on x can extend in unexpected ways after a
Magidor product of Prikry forcings. In particular, the filter generated by
U in the forcing extension is not an ultrafilter. Moreover, these unexpected
extensions answer several natural questions in the theory of ultrafilters.

For example, recall that Kunen’s inconsistency theorem states that there
is no nontrivial elementary embedding from the universe of sets to itself.
Suppose U is a countably complete ultrafilter, and let Vi; be the ultrapower
of the universe of sets by U. Can there be a nontrivial elementary embedding
from V7 to itself? By [7, Theorem 3.3, Theorem 4.29], the answer is no if
V = HOD or if U is k™-complete where r is extendible. Nevertheless, we
answer the question positively assuming the consistency of a measurable
limit of measurable cardinals:

Theorem 1.2. [t is consistent with ZFC that for some normal ultrafilter
U, there is an elementary embedding from Vy to itself.

We then consider the question of ultrafilters with the same ultrapower.
Suppose U and W are countably complete ultrafilters such that Vi = Viy.
Must U and W be isomorphic (that is, Rudin-Keisler equivalent)? Woodin
observed that the answer is no [7, Theorem 3.1], though again this is true if
V = HOD. We consider the weaker question: must there exist X € U and
Y € W with |X| = |Y|? Again, we show the answer is no after a discrete
Magidor product of Prikry forcings, assuming the consistency of a limit of
measurable cardinals of measurable cofinality:

Theorem 1.3. [t is consistent with ZFC that there are countably complete
uniform ultrafilters U and W on distinct cardinals such that Viy = Viy.

Recall that the Ultrapower Axiom (UA) [6] states that for any two count-
ably complete ultrafilters U, W, there are W’ € Viy and U’ € Vi such that
W' is a countably complete ultrafilter in V;, U’ is a countably complete
ultrafilter in Viy, (Vir)wr = (Viw)yr and jwr o ju = jur o jw. The Weak
Ultrapower Axiom (Weak UA) is the same statement, omitting the require-
ment that jW/ OjU = jU/ ij.

The conclusions of the previous theorems are incompatible with UA by
[7, Theorem 5.2]. Therefore UA typically becomes false after performing
a discrete Magidor product of Prikry forcings. Nevertheless, starting from
a model of UA containing no measurable cardinals § of Mitchell order 2257



APPLICATIONS OF THE MAGIDOR ITERATION TO ULTRAFILTER THEORY 3

our main technical result (Theorem 5.7) yields a classification of the lifts of
k-complete ultrafilters on x to the forcing extension.

This classification suffices to show in certain cases that Weak UA holds
in the forcing extension. This answers a question of the second author [6,
Question 9.2.4], assuming there is a measurable limit of measurable cardi-
nals:

Theorem 1.4. The Weak Ultrapower Azxiom does not imply the Ultrapower
Axiom.

The above results follow from our main technical theorem which is an
analysis of all possible extensions of k-complete ultrafilters over x whose
ultrapower can be factored into a finite iterated ultrapower by normal ul-
trafilters. The following consequence gives a sense of what this classification
entails:

Theorem 1.5. Suppose that W € V is a k-complete ultrafilter over k that
can be factored into a finite iteration of mormal ultrafilters. Let G be V-
generic for a discrete Magidor product of Prikry forcings. Then in V[G], W
extends to at most countably many countably complete ultrafilters.

Moreover, if W* is an extension of W, then jw+ [ V =10 eo jy, where
e : Viv = N is a finite external iteration of Viy by normal measures and i
is an internal iterated ultrapower of N by normal measures.

The previous theorem also gives a sense in which our classification gener-
alizes Kaplan’s result.
This paper is organized as follows:

e In Section §2 we prove some preliminary results regarding ultrapow-
ers and the discrete Magidor product.

e In Section §3 we study the complete iteration by a sequence of normal
measures and how it relates to the restriction of an ultrapower of the
generic extension to the ground model.

e In Section §4 we describe an ultrafilter which has many extensions
to the generic extension of the discrete Magidor product and char-
acterize its extensions. Also, we provide the example of a non-rigid
ultrapower.

e In Section §5 we prove our characterization of lifts of ultrafilters to
the generic extension by the discrete Magidor product.

e In Section §6 we prove some applications of our characterization: a
model of weak UA which fails to satisfy UA, and an example of the
same ultrapower by ultrafilters on different cardinals.

e In Section §7 we present some related open problems.

2. PRELIMINARIES

2.1. Derived ultrafilters and commuting squares. Let P be a transi-
tive model of set theory and let U be a (possibly external) P-ultrafilter over
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aset X € P.! We will always assume that U is countably complete; namely,
for any countable A C U, (A # (. Denote by j(]; : P — Py the ultrapower
of P by U using functions f : X — P in P. We will suppress the superscript
P from j5 whenever there is no ambiguity. Since U is countably complete,
Py is well-founded and we identify Py with its transitive collapse.

Let 7 : P — @ be an elementary embedding of transitive models of set
theory, X € P, and a € j(X). The P-ultrafilter on X derived from j and a
is the set

U={AeP(X)NPlacj(A)}
(The underlying set X is typically suppressed.) It is well known that U is a
P-ultrafilter and that the map k : Py — @ defined by k([f]y) = j(f)(a) is
the unique elementary embedding mapping [id]y to a such that ko jy = j.
The following generalization of this fact will be used implicitly in many
calculations below:

Lemma 2.1 (Shift lemma). Suppose i : P — @ is an elementary embed-
ding, W is a Q-ultrafilter over a set in rng(i) and U = i~ *[W]. Then the
embedding k : Py — Qw defined by k([f]ly) = [i(f)]w is well-defined and
elementary. Moreover, it is the unique embedding mapping [id]y to [id]w
such that the following diagram commutes:

Q " Qw
P v
Proof. Note that U is the P-ultrafilter derived from jy oé and [id]y . More-

over, k is the associated factor map, and the lemma follows. O

Suppose ¢ : M — N is an elementary embedding and X C N. Then
Hull™¥ (i[M] U X) denotes {i(f)(s) : s € X<« f € M}. This is the smallest
elementary substructure of N containing i[M]U X.

Lemma 2.2. Suppose that D is a P-ultrafilter, j : P — M, j' : Pp — M’,
and k : M — M’ is such that M' = Hull™ (rmg(k) U rng(j')) and the
following diagram commutes:

Py —— M’

N

PﬁM

Then if D' is the M-ultrafilter derived from k and j'([id]p), Mp = M’,
k= jD/, and [id]D/ = j/<[2d]D)

IThat is, U is an ultrafilter on the Boolean algebra P(X) N P.
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Proof. Note that there is a factor map k' : Mpr — M’ defined by ¥ ([f]p/) =
E(f)(5'([¢d]p)) such that k' o jpr = k. To see that k' is onto, we have

M’ = Hull™' (rng(k) Ung(j'))
— Hull™" (mg(k) Urne(i’ 0 jp) U 7' ([id]n)})
— Hull (mmg() U {7 (jid]p)}) € (k)

Since k' is an isomorphism of transitive models, k¥’ is the identity. Also
[id]pr = K'([id]pr) = j'([id] p), proving the lemma. O

Corollary 2.3. If k: M — M’, M’ = Hull™ (rng(k) U {a}), and a € k(X)
for some X € M, then Mp = M' and k = jp where D is the M -ultrafilter
over X derived from a and k and [id]p = a.

k)
k)

Proof. This is a special case of the previous lemma where j = id and 7’ is
the factor embedding. O

2.2. Iterations and products of Prikry-type forcings. We define the
Magidor support iteration (Pn,Qp | o < Kk, < k) associated with a se-
quence of names (Uq | o € ¥) whiere 3 C & is a set of measurable cardinals.

Definition 2.4 ([11, 4]). The forcing P, is defined inductively for each
a < k: a condition p belongs to P, if it is a function p with dom(p) = «
such that:

(1) for every f < a, p | B € Pg.
(2) for every 8 < a, p [ B IFp, p(B) € Qp, where Qg is trivial unless
p € %, in which case lIFp, Ug is a normal ultrafilter over 38 and oF
is a Pg-name for the usual Prikry forcing? Pr(Ug) from [13].
(3) there is a finite set b, such that for every 8 € a\ by, p [ B IFp,
p(B) <" 1g,.
We define p < ¢ iff for every 8 < «, p [ B IFp, p(B8) < q(B). Also define
p <* ¢ iff for every B < a, p | BlFp, p(8) <* q(B).

Magidor [11, §2] originally defined his forcing so that for a condition
p € Py, and B € ¥Na, p(B) = (t, A). where tg is a finite sequence of ordinals
and A is a Pg-name such that IFp, A € Ug. A straightforward inductive
argument shows that this is a dense set of conditions in the forcing defined
above.

A set of ordinals A is called discrete if it contains none of its accumulation
points; that is, for every a € A, sup(A N«a) < a. In particular, A is
an extremely thin non-stationary set, and so are all its restrictions to a <
sup(A); similarly, if A C & is discrete, then for every k-complete ultrafilter U
over k, k ¢ ju(A). Note that if x is the least measurable limit of measurable
cardinals, then the set of measurables below k is discrete.

2Recall that Pr(U) consists of pairs (¢, A) € []<“ x U, where max(t) < min(A). It is
equiped with two orders, (¢, A) < (s, B) iff tNmax(s) = s and A C B, and (¢, A)<*(s, B)
iff t=sand AC B. Thus 1p,v) = (0, k).
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Notation 2.5. For the rest of this section, we fix a discrete set A C k of
measurable cardinals and a sequence U = (U, | @ € A) such that U, is a
normal measure of Mitchell order 0 over a.

We will consider the Magidor iteration associated to (Ug | 8 € A) where
Ug is a Pg-name for the filter generated by Uz in VFs (see Proposition

2.7(2)).

Remark 2.6. Since the set A is discrete, a Magidor support here is always
going to be non-stationary. Hence the forcing above inherits the properties
of both the non-stationary and Magidor support iterations of Prikry-type
forcings on the set A.

Proposition 2.7. (1) Py is k1 -cc.
(2) If a € A, U, generates a normal ultrafilter in VFe.

Item (2) follows from Lévy-Solovay. For the proof of (1) see [11, 4.4].

Proposition 2.8. The set of conditions p € P, such that for every g € A,
p(B) = g for some q € Pr(Ug) is <-dense in P,.

Proof. Let p € P, be a condition, and without loss of generality, assume
that for each § € A, p(8) = (t3,Ag), where tg € [B]<*. For B € A,
define p*(B) = (tg, Aj) by setting Ay ={y < B [p [ Blp, ¥ € As}. A
Lévy-Solovay-like argument shows that p* € P, and this is clearly a direct
extension of p. O

If p € P, belongs to the dense set of the previous proposition, for § €
A N a, we denote by (tg,Ag) the unique ¢ € Pr(Ug) such that p(8) = q.

Definition 2.9. The Magidor support product [[,ca Pr(Us) consists of all
functions p such that dom(p) = A, p(a) € Pr(U,), and {a € A : p(a) <* 1}
is cofinite.

By the previous proposition, we obtain the following corollary:

Corollary 2.10 (Magidor). P, is forcing equivalent to the Magidor support
product [[gepng Pr(Us)-

We shall often treat Py as if it were the product [[5c o Pr(Us).

As usual in iterated forcing, one can construct factor forcings P, gy € VPa
such that Py * P, 5) = Pz. This works in general for the Magidor iteration
(and other iterations of Prikry-type forcings), but in the discrete case con-
sidered here, the factor forcing takes a simpler form: it is forcing equivalent
to the Magidor product [[¢cana,5) Pr(Ue). (One can use compute this forc-
ing in V or VFe; the former factor forcing is dense in the latter.) We also
define P(o 5y = [ecan(a,p) Pr(Ue), ete.

Lemma 2.11 (Prikry Lemma). For every p € Py, and every sentence o in
the forcing language for P, there is p* <* p such that p*||o.
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2.3. On ground model ultrafilters that generate ultrafilters in the
extension. In this subsection, we provide a version of Theorem 1.1 which
provides slightly more information in the context of discrete sequences of
measures.

Definition 2.12. Suppose A is a measurable cardinal and % C X is un-
bounded. A A-complete ultrafilter U over A is called X-mild if there is a
function f : A — X such that

lidlu < ju(f)(A) <min(ju(X) \ A)

Note that if U is a normal measure with X ¢ U, then U is ¥-mild. Also,
every Y-mild ultrafilter is a p-point.

Theorem 2.13. If U is a (A N \)-mild ultrafilter over a cardinal X ¢ A,
then U generates a A-complete ultrafilter in V.

Proof. Let G C Py be V-generic. Note that it suffices to show that U
generates an ultrafilter in V[G], because the factor forcing Py ) does not
add subsets to A since A ¢ A.

By Gitik and Kaplan [5, Prop. 2.6 and Prop. 2.7], since A and A" remain
regular in V[G], it suffices to prove that ji7[G] decides all statements of the
form [id]yy € jy(A), where A is a Py-name for a subset of A\. Given such a
name A, we may assume that it is a P, [ A-name.

Let us work in Vi7[G]. Let Ay be the Py ju(r)-name obtained from

ju(A). By the Prikry property, there is a condition ¢ <* 1Py s such
that ¢ || “[id]y € Ag” and therefore there is p € G such that

plFqll “[idly € ju(A).”
In other words, (p,q) || “[id]y € ju(A)”. Let us show that there is p’ € G

such that ji(p') < (p,q). Fix a sequence (A, : v € ju(A) N (A, ju(N)) € Vi
such that for all v € dom(q), ¢(v) = (0, A,). Let

a (A |y e An[r(a),\)

represent ¢ in jy where 7 is the function representing A in V.

Let us proceed with a density argument. Let p € P,. We shrink p in the
interval [yo, A), where 79 = max(b, N X\) + 1. For v > 79, v € AN A, define
Ag = A5<7Ag5). Moreover, given that f witnesses that U is (A N A)-mild,
if f(sup(ANv)) >y welet AL = Ag \ sup(AN~) and if f(sup(AN~y)) <~
we let

A% = A9\ max{ f(sup(A N)),sup(A N y)}-

We shrink p so that 45 C Ax for v € A\ 40, and by genericity we can
find such a p* € G such that p* < p. Then jy(p*) | A = p* < p and
jU(p* f P‘v’{')) < ]U(p [ [)‘a’%)) For v € jU(A) a P‘ij(K’)% we note that
A ¢ ju(A) by our assumption that A ¢ A and A is discrete. We need to
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argue that A]%U(p*) C A,. Denote by

jolam (ASY) [y € Anfr(a), V)(B) = (Ag | 7 € ju(A)N[iu (1) (B), ju(V))-
Then by definition, Ajq, ., = Ay for every v € ju(A) N [Aju(N). If
7 = min(is(4)\ ). then () (upCic ()1 ) = o)) 2 il an we
ave
AP C Ag oy Ag oy \Gu(F)(N) +1C Apg, o = Ay
If v > min(jy (A) \ ), then sup(ji(A)N~y) > min(jy(A)Ny) > [id]yr, hence
we still have AZ'YU ") C A,. It follows that jy(p*) < p~q as wanted. O

The discreteness of the set A is essential here; without it, even 0-order
normal measures might not generate ultrafilters. We give an example of this
behavior due to Ben-Neria in Example 3.9.

Example 2.14. In Section 4.1, we will give an example where U does not
generate an ultrafilter in V[G] even though [id]y < min(jy(A) \ k). Hence
the assumption regarding the existence of the function f cannot be removed
in Theorem 2.13.

Note that if [id]y is below the first My-Ramsey cardinal (for example)
above A, then U is A-mild. Moreover, by the counterexample of Section 4.1,
[id]y being below the first My-measurable cardinal does not suffice for U to
be A-mild, or even for U to generate an ultrafilter in V[G].

3. THE COMPLETE ITERATION

One aspect of understanding the lifts W of an ultrafilter W to a generic

extension V[G] is to analyze the factor map k : Vi — j%[G}(V) defined

by k([flw) = | f]w*@. In the case of a generic extension by an iteration
of Prikry forcings, the factor map can often be described in terms of the
complete iteration:

Definition 3.1. Let U = (Us | § € A) be a sequence such that Us is a
normal measure on § and A is any set of measurables. Let us define, by
transfinite recursion, the complete iteration associated with the sequence U.
This will be an iterated ultrapower of V' denoted by

(Noill) | o< B < 6)

starting with No = V. Simultaneously, we will define sets of ordinals (s§ |
§ € ip,a(A)) starting with s§ = 0 for all § € A.

For a < 0, let W, = ia((_j)ga where d, € iq(A) is the minimal § such that
the set s§ is finite. Let Noq1 = (Na)w,, and let iq a41 1 No — Nay1 be the

ultrapower embedding associated with W,. Define
(Z) /B € ia+1(A) \ioz,oc-i—l[A]

sgtl =088 U{0a} B=tlaar1(0a)
sg o.w.
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At limit steps p, we take the direct limits of the embeddings and let Sp =
U{s3 | @ < pyia,p(B') = B} for every B € iy(A). The sequence (s |a €
i0,0(A)) is called the sequence of sets of indiscernibles associated with the
complete iteration of U.

—

We usually omit the superscript U from iV, and we denote 6 by co when

the length of the iteration does not play a significant role.

For example, if A consists of a single measurable cardinal, then the com-
plete iteration is simply the w'! iterated ultrapower of the only normal
measure in U , and the sequence of sets of indiscernibles consists of the cor-
responding sequence of iteration points.

Proposition 3.2. Let i : V — N be the complete iteration of (j, where

—

dom(U) = A is discrete. Then:

(1) For every c, da+1 = ia,a+1(0a)-
(2) For each v € A, there is a unique oo = a(7y) such that 6o = 7.
(3) For each v € A, igo(y) =7, and i(y) = iq,a+w(y), where o = a(y).

Proof. For (1), we have that i (A) N d, is bounded in d,, and therefore
ta+1(A) Nigat+1(0a) = ia(A) N dg.

Hence every 6 € in+1(A) Niq,a+1(da) has been used infinitely many times
and 0a+1 > ia,a+1(0q). By definition of 6, equality must hold.

For (2) and (3), fix any v € A, then ~ is measurable, it is routine to
show inductively on f3, if 63 < ~, then iy g(y) = . Since the sequence d,
is strictly increasing, and since A is discrete, after less than ~-many steps
of the iteration we reach a stage «, such that v = §,. This means that the
measure igva(ﬁ' )y was not used before stage a, and every previous measure
was used infinitely many times already. By (1), dq4n = ta,a+n(7), for every
n < w. At stage o + w we get:

ia,0+w(i0,0(A)) = [i0,a(A) N Y] Udaatw(ioa(d) \ )

So the minimal element which can potentially be applied now is iq,a4w(7),
however, we have already used this measurable w-many times, so by the
definition of the complete iteration we must go to the next element which
makes the critical point of i41 ¢ greater than iy q4.(7). We conclude that

tatw0(la,a+w(Y)) = fa,atw(y) and therefore i(y) = iqatw(y) as wanted.
Also we see that for every «,

Z(A) = iO,a(A) N oq U {ia,aer(‘Sa)} U Z(A) \ ia,a+w(6a)
O

Definition 3.3. Given a sequence of sets of ordinals § = (s, | @ € A), each
of order type w, we associate a filter Gz on P, consisting of all conditions p
such that for each «, th is an initial segment of s, and s, \ th C A%.
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Suppose i : M — N is elementary, P € M is a poset, and G C i(P) is
N-generic. Then

HullVE G M U {G)) = {i(r)g : 7 € MT}.

Then Hull™ (i[M] U {G}) is the smallest elementary substructure of N[G]
containing i[M]U{G}. That it is an elementary substructure can be proved
by verifying the Tarski-Vaught criterion using the Fullness Lemma in forcing;
see [8, Corollary 25] for a different approach using Boolean ultrapowers.

Lemma 3.4. Let U be a sequence of normal measures on a discrete set A
with sup(A) = k. Let i =1igg : V — N be the complete iteration of V by
U, and §= (s% | a € i(A)) be the sequence of sets of indiscernibles, and let

G = Ggz. Then the following hold:
(1) G is N-generic for i(Py).
(2) If p is a pure condition then i(p) € G.
(3) N[G] = HulE GV u {GY).
(4) N[G] is closed under d-sequences where 6 = min(A).

Proof. The genericity of G is due to Fuchs [3]. For the second item, if p is

pure, then by induction we can prove that for every £ < 0, s C Aio?’a(p ). This
implies in particular that sg C Ala(p ), as wanted. Suppose this was true for &,
since i¢ ¢4 is the ultrapower by the normal W¢ on ¢, and Aloe®) ¢ We, we

conclude that d¢ € A?’“l(p ). Since below ¢, things do not change, we get
¢

that 71 C Aleen(®)
ige+1(de) = TT0¢
at this stage of the iteration.

For the third item, let H = HullV€(i[V] U {G}). To establish that
H = NI[G], we will show that N C H. Then H = N|[G] since H < N|[G]
and NU{G} € H.

Let S = |J§, the set of critical points of the complete iteration. Then S
is itself discrete and the set of accumulation points acc(S) equals acc(i(A)).
Since every element of N is of the form i(f)(k1, ..., Ky ) for some f : [k]™ —
V, where k1, ..., km € S, it suffices to prove that S C H. In turn, it suffices
to prove that ¢(A) C H, since any element in S is a Prikry point associated
with one of the elements of i(A) and therefore is definable from G and i(A)
in N[G].

Suppose towards contradiction that ¢ is the minimal element of i(A) not
in H. Since i(A) is discrete, v = sup(i(A) N ¢) < ¢ . Note that v ¢ H,
since otherwise easily ¢ € H. It follows that v € acc(i(A)) since otherwise
v € i(A), and hence v € H by the minimality of (. Note that v C H.
Note that v ¢ S since S is discrete and v € acc(i(A)) C acc(S). Therefore
v = i(f)(K1, ..., Km) for some Ki,...,k, < v and so v € H, which is a
contradiction.

The final item follows from the previous one using the standard proof that
the ultrapower of V' by a d-complete ultrafilter is closed under é-sequences.

. Note that above &, all the sequences are empty
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(In fact, one can view N[G] as a Boolean ultrapower of V and apply [8,
Theorem 28|.) Fix a d-sequence of elements (x, | « < §) C N[G]. By the
previous item, each z,, is the interpretation of some i(7,) via G. Note that

(i(Ta) | < 8) =i({(Ta | @ < 6)) | 0 € N.
Therefore (z, | a < 0) € N[G]. O
The following proposition shows that any ultrafilter used in the complete

iteration gives rise to an elementary embedding of the target model of the
complete iteration.

Proposition 3.5. If i = igy : V — N 1is the complete iteration V by ﬁ,
§ is the associated sequence of sets of indiscernibles, and U is an ultrafilter

on § applied at some stage of the complete iteration, then jg[G*‘-} ot =1 and

o5y = 5\ {6}.

Proof. We first consider the special case that § is the least element of the

domain of U. Note that jg (Gl = iy | N[G3] because N[G4] is closed under
0-sequences. Therefore

NG - . U

]U[ }OZZ]UOZ = ju(i) o ju :ZUO]U

where iV : Viy — N denotes the complete iteration of Vi by jU(ﬁ). By
the definition of the complete iteration, ¥ o jiy = i, which proves that
jg G o5 = 4. Similarly, j,]JV [G§1(§) is the sequence of sets of indiscernibles

—

associated with the complete iteration of Vi; by ji(U), which is §\ {6}.

To prove the claim in general, suppose U is the ultrafilter used at stage «
of the complete iteration. Then i = 74000704 Where ig, : V' — N, is an initial
segment of the complete iteration V' by U and iaoo : No — N is the complete
iteration of N, by W = igo(U) | [§,00). Let 59 denote the sequence of
sets of indiscernibles associated with g, and let §*°° denote the sequence
of sets of indiscernibles associated with iqe0. Then Gzoa X Gzace = G-

The special case of the claim proved above, applied in N, to U and
W, implies that jg[Ggo‘oo] 0 laoo = faco and jg[Ggam1(§a°°) = g\ {d}.
This yields the full claim almost immediately, except that we have to ver-
ify that jg[Ggaoo] is the restriction of jg[Gﬂ to N[Gzaxs]. But j]UV[Gg] =

N[G.0a xGzaco . N[Gzaoo . .
]g (G 00 G }, which extends ]g [Gsace] by the proof of the classical Lévy-

Solovay theorem [10]. O

3.1. The canonical extension of an ultrafilter. Suppose that in V., W
is a k-complete ultrafilter on a set X. Using a construction due to Mitchell
[12], we will define a k-complete V[G]-ultrafilter W* € V[G] extending W.
(The extension W* is essentially due to Magidor; it is the construction of
W* using complete iterations that is due to Mitchell.)

Let j : V — M be the ultrapower embedding associated with W. Let
Q = Py, so that j(P,) can be naturally identified with P,, x Q. To lift j
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to V[G], one might try to produce an M-generic H on Q such that j[G] C
G x H. If A is unbounded in k, however, no such M-generic H can exist
in V[G]: the ordinal § = min(j(A) N (k,j(k))) has uncountable cofinality in
V[G], so in V[G], there is no cofinal w-sequence in 4.

Instead, we will produce an inner model N and an elementary embedding
i: M — N such that there is an N-generic filter H on i(Q) with i o j[G] C
G x H. Then by the Silver lifting criterion, ¢ o j lifts to an elementary
embedding from V[G] to N[G x H].

Let ¢ : M — N be the complete iteration of M via the sequence j ((j )l
(k,j(k)). Let § be the sequence of sets of indiscernibles associated with the
complete iteration, and let Gz be the associated N-generic filter on i(Q)
(Definition 3.3).

Note that G is an N[Gg]-generic filter on P, and so by the Product
Lemma, G x Gz is an N-generic filter on P, x Q. We must verify that
i0j[G] € G x Gz. For each p € Py, j(p) has the form (p,q) where ¢ € Q is
a pure condition, or in other words, a direct extension of 1g, and therefore
i07j(p) = (p,i(q)). For every pure condition ¢ € Q, i(q) belongs to H, by
Lemma 3.4. Hence i o j(p) = (p,i(q)) € G x Gz.

By the Silver lifting criterion, let j* : V[G] — N|G x G35 be the unique
lift of 7 o j such that j*(G) = G x Gg.

Definition 3.6. The canonical extension of W to V|G| is the V[G]-ultrafilter
W* on X derived from j* using i([id]w ).

Note that W* is k-complete in V[G] since it is derived from j*, which has
critical point at least k.
The next proposition shows N[G x Gg| = V[G|w+ and j* = jy~.

Proposition 3.7. Suppose W is a k-complete ultrafilter and W* is the
canonical extension of W to VI|G|. Then jw= | V = io jw where i :
Viy — N is the complete iteration of Vi associated with jy (U) | (k, jw (k)).
Moreover, jw+(G) = G x Gz where § is the sequence of sets of indiscernibles
associated with the complete iteration.

Proof. The proposition follows from Corollary 2.3 once we show that
NG x G5 = HullV®* % (i o iy [VIU{G, G, i([id]w)}).

This in fact implies directly that jy+« = j*. To see the above, applying the
third item of Lemma 3.4 inside of M, we see that

N[G4] = HullVI9 (5 o ji [V] U {Gg, i([idlw)}).
Then we finish by noting that being a forcing extension of N[Gz], N[G x G5
is the hull (in itself) of N[Gg U {G}. O

In the case that W is A-mild, Theorem 2.13 shows that W* is the unique
extension of W in V[G] and therefore Proposition 3.7 can be used to analyze
the ultrapower of the ultrafilter generated by W in the generic extension.
This is a slight generalization of Kaplan’s theorem stated in the introduction.
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Although this is just the combination of Theorem 2.13 and Proposition 3.7,
we record it for future use.

Corollary 3.8. Let W be a A-mild ultrafilter in V' and let G C Py, be V-
generic. In V[G], W generates its own canonical extension W* and jy~ |
V =iojw, where i : Viy — N is the complete iteration of M associated

with j(U) | (k,j(k)). Moreover, jw~(G) = G x Gz where § is the sequence
of sets of indiscernibles associated with the complete iteration.

We now give Ben-Neria’s counterexample to normal measures generating
ultrafilters after (non-discrete) Magidor iterations.

Example 3.9. Suppose k is a measurable cardinal of Mitchell order 2, A
is the set of all measurable cardinals less than x, and G C P, is V-generic
for the Magidor iteration.

Take any normal measure U; over x of Mitchell order 1 in the ground
model. Ben-Neria [1, Notation 2.3] defines an ultrafilter U as the projection
of Uf by the function d : A — k mapping each measurable cardinal in A to
the least element of its corresponding Prikry sequence.

By Ben-Neria [1, Proposition 2.1], U] is a normal measure in V[G]. Let
Up = U NV, so that Uy is a normal ultrafilter in V by [5]. Also Uy must be
of order 0 (and in particular Uy # Uy ): otherwise, d would be a finite-to-one
regressive function defined U;-large set.

Consider the ultrafilter Uj. Then Uj is a normal ultrafilter [1, 2.1] in
VI[G] and we claim that Uj # U;*, which yields two distinct extensions of
Up to normal ultrafilters in V[G]. Indeed, since U is of order 1, the set A of
measurables below £ is in Uy, and therefore, by definition d[A] € d.(U;) =
U*. On the other hand, as Uy is of order 0, d[A] ¢ Uj: otherwise, x must
appear in the Prikry sequence in V[G]Ug associated to some element of
Jug (A), but by Proposition 3.7, the elements of these Prikry sequences are
critical points in the complete iteration of Vi;,; k cannot be such a critical
point since £ is not measurable in Vy,. Hence U # Uj.

3.2. Mitchell’s lemma. Next, we prove a variation of Mitchell’s lemma
from [12], which gives an analysis of ultrapowers of canonical lifts within
complete iterates of V' that is a key part of the proof of our classification
results in Section 5.2. The idea is to take a sufficiently complete ultrafilter
W and a complete iteration ¢ : V' — N and analyze the ultrapower embed-
ding associated to the canonical extension of i(W') to N[Gj], where § is the
sequence of sets of indiscernibles. It turns out that this embedding is simply
the restriction to N[G3| of the ultrapower embedding jy : V — Vyy.

Let U be a sequence of normal measures on a discrete set A C k. Let i =
i0.00 : V — N be the complete iteration of V by U, and § = (s | a € i(A))
be the associated sequence of sets of indiscernibles, and let G = G3.

Lemma 3.10 (Mitchell). Suppose that W is a k-complete ultrafilter. Then

«752%;)#] = jw | N[G5|.
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NIGsliwy
Ji(w)* Ul
N[G4] Jw(N)
Ji(W)
N Ni(W) iiw (@)
l_’iU 7
1% W > Viv

Ficure 1. Mitchell’s diagram

Moreover, the canonical factor map k : Ny — Jywy=(IN) is given by the

—

complete iteration of Ny by i(jw (U)) I (K, jw (k).

Proof. By replacing x with the completeness of W, we may assume that x
is a measurable cardinal, and in particular that k is strongly inaccessible.

We first note the bottom rectangle in Figure 1 commutes; this is just by
the usual formula j;yy oi =10 jw.

Second, we note that for the same reason the quadrangle with vertices
V, N, jw(N), and Vi also commutes, using here that jw(ﬁ) 'k =U and
therefore . B

Jw (i) = w ) — if;WOgU) o3

For ease of notation, for any j : V. — M obtained by composing arrows
in the diagram, let UM = j(U). (The fact that this is well-defined follows
from the commutativity we have established.)

The commutativity established in the previous paragraphs allows us to

show that

w TN =g TN

LN ﬁ
To prove this, we first observe iU " I(r00) — lg‘;gv, by the definition of

the complete iteration: since igﬁvw =1 [ Vi, which embeds Vi into Ny,

NiA% . . . TN, .
zgo‘g is the complete iteration of UV« restricted to measures above .

Then by Proposition 3.7,

.N[G¥ gNiw) . Ria4 .

Gigwye TN =000 o iy = L5 o iy

By the commutativity facts established in the first two paragraphs, jw [ N
TV 3

and 1, o

#, both being the identity there. Since N = Hull” (i[V] U ), it follows that

Jw I N = jf&%i] ' N as claimed.

o jf{w) agree on i[V]. Moreover jy | N and zgzgv ojl.]EIW) agree on
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Next, to show that ]ZE[V[%?] = jw | N[Gj], it now suffices to prove that

these two embeddings agree on Gz By elementarity, jiw (Gz) is equal to
the generic associated to the sequence jy () of sets of indiscernibles coming
from the complete iteration of Vi by jw(ﬁ). But j;w)-(G5) is equal to the
same thing, by the “moreover” clause of Proposition 3.7 and calculations

similar to the previous paragraph. O
Corollary 3.11. Suppose A ¢ A is a measurable cardinal and W is a \-

complete ultrafilter on . Then jﬁégf} = jw | N|G3].

Proof. By the previous lemma, it suffices to consider the case that A <

sup A. Also, the previous lemma implies that ]EJZIV[S)F*] = jw | N[Gj] where

: V — N is the complete iteration of U restricted to measures below A and
is the associated sequence of sets of indiscernibles.

Note however that (W) = ¢(W), and by Lemma 3.4 applied in N[G,
N[G3] is an inner model of N[G that is closed under A\-sequences in N|[G.
It follows that

i
¢

N[Gs] _ -NI[Gf]
which proves the corollary. U

| N[G5] = jw I N[G3],

3.3. Normal measures and the complete iteration. In our classifica-
tion of lifts of ultrafilters under the discrete Magidor product we will have to
classify the possible extensions of the point-wise images of a normal ultra-
filter under the complete iteration. The next lemmas will be used for that
purpose. The tail filter on an ultrafilter p is the filter generated by the sets

{(a,p) [ o < p}.

Lemma 3.12. Ifi: M — N is an elementary embedding, U € M is a
normal ultrafilter on §, and N = Hull™ (i[M|Ui(8)), then FUi[U] generates
i(U) where F denotes the tail filter on i(9).

Proof. Let X € i(U). Since N = Hull™ (i[M] U i(9)), there is f € M and
n < i(0) such that X = i(f)(n). Changing f if needed, we may assume that
f:0—U. Let A* = Ay<sf(c), then by the normality assumption A* € U.
It follows that i(A*) \ n+ 1 C i(f)(n) = X, and therefore X is in the filter
generated by F' U i[U]. O

Lemma 3.13. Suppose i : M — N is the complete iteration of (_j, 0 =
min(dom(0)), and n < i(8). Let X = HullN(i[M]Un), let k : N — N be
the inverse of the transitive collapse of X, and let i = k= oi. Let n < w be
least such that n < i, (8). Then i = ig, and k = ipeo.

Proof. Let M, be the (transitive) n'l-iterate of M in i, namely inoo : My —
N, and ig, : M — M,,. We claim that X = i), oo [M,], from which it follows
via uniqueness that i, o, = k and therefore i=kloi= i0,n- Indeed, any
xz € X has the form i(f)(§) for some & < n < ig,(6). Each such ordinal
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can be represented using 6, i,1(9), ..., t0,n—1(6) and therefore we may assume
that « = i(f)(9,40,1(0), ..., %0,n—1(0)) since the critical point of i, o is 40,5 (9),
we have that

T = in,00 (G0, (f)(6,40,1(6), - i0,n-1(0))) € T0g(in,00)
The other inclusion is similar. O

Lemma 3.14. Suppose i : M — N is an elementary embedding § is a
reqular cardinal, and 6 < n < i(9) is such that n € i(C) for every closed
unbounded set C C & in M. Let X = Hull™ (i[M]Umn), let k: N — N be the
inverse of the transitive collapse, and let i = k= oi. Then i(8) = 7.

Proof. Since k™! is just the transitive collapse, it suffices to prove that there
are no ordinals @ € X between 7 and (). Let o € X be below i(d). Then
by a =i(f)(§) for some £ < n. We may assume that f:6 — 6. Let Cy C 6
be the club of closure points of f. Then the assumption of the Lemma,
n € i(Cy), namely, 7 is a closure point of i(f). Since & < n, a = i(f)(§) <.
Hence no ordinal in X is between 7 and i(9). O

A filter on p extending the tail filter on p is called fine.

Lemma 3.15. Suppose M is a transitive model of set theory, i : M — N is
the complete iteration of U in M, U is a normal M -ultrafilter on &, where
& s the minimal element in dom(ﬁ), and U is a fine N-ultrafilter on an
ordinal n < i(0) extending {i(A)Nn: A € U}. Then one of the following
holds:

o {ion(d)} € U for some n < w,
o U =1ipp(U) for somen < w.

Proof. If n = v + 1 is a successor ordinal, then since U is fine, {v} € U. In
that case, for every A € U, v € i(A). Note that since the critical point of
fw,0o 18 greater than ip(0), 19w (A) = i(A). Since igy, is the w™ iterate of
the normal measure Us, the only seeds for a normal ultrafilter in ¢, are the
i0.,(8)'s3, hence v = i, (8) for some n < w.

Now assume that 7 is a limit ordinal. Since U is fine, every set in U is
unbounded in 7. It follows that for every closed unbounded set C' C ¢ in
M, i(C)Nn is unbounded in 7, and therefore if n < ¢(J), then n € i(C). Let
X = Hull¥ (i[M]Un), let k : N — N be the inverse of the transitive collapse
of X,and let i = k! 0.

3If W is a normal ultrafilter derived from 10, using a, then W is derived from 4o , and
o’ for some n < w and some o’ such that in41,,(0’) = a. Therefore W <gx Uj*. But
then W =grx U™ for some m < n (see for example [2, Lemma 2.4]). Since W is normal,
m =1 and W = U, and again by normality, the only RK-projections of U™ onto U are
given by the coordinate projections. Equivalently, the only seeds « for U from jy» are
{i0,m () | m < n}.
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Note that i : M — N, N = Hull™ (i[M] Un), and i(§) = n by Lemma
3.14%. Lemma 3.12 implies that F'Ui[U] generates i(U), where F' denotes the
tail filter on 7. Since U is fine, F C U, and i[U] = {i(A)Nn: Ae U} CU.
Since F U i[U] generates i(U), it follows that 7(U) C U.

By Lemma 3.13, there is some n < w such that i = ig, and k = ipec.
Since k = in00 and 1 < crit(k), we have P(n) NN = P(n) NN, and therefore
using the maximality of ultrafilters and the fact that i(U) C U, we obtain
i(U) = U. Since i = igy, we have U = i(U) = ig,(U), which proves the

lemma. O

4. SOME ULTRAFILTERS IN THE DISCRETE MAGIDOR EXTENSION

Throughout this section, we fix a measurable cardinal x, a discrete set
of measurable cardinals A C & such that sup(A) = k, a sequence U=
(Us : § € A) of normal ultrafilters Us on 0, and a V-generic filter G on
the discrete Magidor product P, associated with U. This section is devoted
to showing that Kaplan’s theorem (Corollary 3.8) does not generalize to
arbitrary x-complete ultrafilters on k.

4.1. An ultrafilter with infinitely many extensions. In this subsec-
tion, we exhibit a k-complete ultrafilter W on k x s that, in V[G], has
infinitely many distinct extensions to k-complete ultrafilters.

Before we do this, let us make some general comments on where ultrafilters
in V[G] come from. Let W be a V|[G]-ultrafilter. Then W is uniquely
determined by the following three ingredients:

o V)

e j;i;(G), the image generic
e [id]}5, the seed

V', the restricted ultrapower embedding

via]

The first two ingredients determine j and given that [id];, = a, we can

recover W as the ultrafilter derived from j viel

Note that an arbitrary list of ingredients need not form a recipe for cooking
up a genuine V[G]-ultrafilter. Suppose one is given an elementary embedding
j:V — M, an M-generic filter H on j(P,) and a point a € M. When is
there a V[G]-ultrafilter W whose restricted ultrapower is j, image generic is
H, and seed a? It is easy to see this is the case if and only if the following
hold:

and a.

° JIGICH
e M C Hu WM (GIVIU{H,a}).

4Although in Lemma 3.14 we are assuming that n < i(), the conclusion 1 = i(4) is
true also when n = i(d). To see this, note that in this case i(§) + 1 C X and therefore

i(5) = k~(i(6)) = i(5) = n.
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We use here Corollary 2.3 which sets up an equivalent condition for an
embedding k : V[G] — M being an ultrapower embedding by some V[G]-
ultrafilter .

Let us turn to the description of the ultrafilter W with infinitely many
extensions to V[G]. We start with any normal ultrafilter D on k. For each
a < K, let

d(a) =min(A\ a)
and let

W =3 Usw
D

In other words, a set A C k x k belongs to W if and only if for D-almost
all a, for Usyy-almost all 3, (o, 8) € A. The well-known general analysis of
sums of ultrafilters yields the following lemma (see for example [6, 3.5.7]):

Lemma 4.1. Let § = min(jp(A) \ k) and let U = jp(U)s. Then Viy =
(Vb)u, jw = ju o jp, and [idlw = (k,d).

A V[G]-ultrafilter W given by the three ingredients extends W if there
is an elementary embedding k : Vi — jj/(V) such that the restricted
I‘//V[G} [V is equal to ko ji and k maps [id]w to [id]y;.

The first lift is the canonical extension W* (see Definition 3.6), whose
three ingredients are i"' o jy;, G x Gzw and (k,d). Here

ViV > N

is the complete iteration of Vi by jw(U) | (k,jw(k)). (Note that the
critical point of " is above §.)

To define a non-canonical lift of W, we will absorb jy into the complete
iteration ¢”. Formally, let i : Vp — N’ be the complete iteration of Vp
via jp(U) | (k,jp(k)). Since U is the first ultrafilter used in the complete
iteration of jp(U) | (k,jp(k)), it is easy to see that N’ = N and
’iD = 7,W o ,jU'

Let AN =4P(A), and let 5P = (s? : a € AN\ k) be the associated sets
of indiscernibles. By Proposition 3.7, letting D* be the canonical extension
of D, ngG] 'V =iPojp and ngG](G) =G x Gp.

Observe that

ultrapower j

vt oJw =1t OJuceJp =1t ©°])D

Similarly, letting 5" = (s : a € AN \ k) denote the associated sequence

of sets of indiscernibles and 6* = i”(§), we have
D_{ﬂ’ if o # 67
sy u{s} ifa=6
It follows that jp= # jw~+ since
jw+(G) = G x Ggw # G x Gzp = jp+(G)
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yet
V[G]W* = N[G X Ggw] = N[G X G§D] = V[G]D*.

Now let W’ be the V[G]-ultrafilter on x x x derived from jp« using (k, ).
Then by Corollary 2.3 jy = jp=. To see that W’ lifts W, we note that
jp« 'V = iP o jiw = iV o jir and again i (k,0) = (k,0). So the three
ingredients of W’ are iV o jy,G x Ggp, and (k,8). As we noted above,
Jjp+(G) # jw+(G) and it follows that W/ #£ W*.

Thus we have constructed two distinct V [G]-ultrafilters extending W: the
canonical one, and another that is Rudin-Keisler equivalent to D*. Are these
the only extensions? As the title of this subsection suggests, the answer is
no and there are infinitely many more, falling into two countably infinite
families: the first generalizing W’ and the second generalizing W*. We be-
gin with the generalizations of W/, which are a bit easier to describe as they
are all Rudin-Keisler equivalent to D*. Let (0p)n<, be the increasing enu-
meration of sg, the set of indiscernibles associated with §* in the complete
iteration of Vp.

Definition 4.2. Let W,! be the V[G]-ultrafilter derived from jg,[G] using

(K, 0n).

The reason this forms an extension of W is that we can represent "V o jy
differently. It is a well-known fact that jyni1 = jj . @) © jur = (Jun |
Vir) o ju. Therefore

W . Z.D

i ojw =1 0°jp

.D . .
41,0 ©Jun+t1t ©JD

=il 100 (Jun | Vi) ojuojp
=il 1 g0 (Gun I Vi) 0 jw

Once again it is not hard to see that Corollary 2.3 can be applied here to

conclude that for every n < w, jl‘g/[lG I = jg@ and [id]y1 = (k,d,). In other

words, the three ingredients that determine W,% are ifﬂﬂ ojun | My o jw,
G xGzp, and (k, 0,). Note that Z'E_Hﬁ(jUn(m,(S)) = (k,jun(9)) = (K, 0p) and
therefore W, lifts W. All the W,l’s are distinct as they are derived from the
same normal ultrapower embedding (i.e., they are Rudin-Keisler equivalent)
using different seeds.

We now turn to the second family of extensions of W: the generaliza-
tions of W*, which will be denoted by W?. We specify the ultrafilter W9
by listing the three ingredients first. As in the case of W}, the restricted
ultrapower embedding associated with W is i o jp and the seed is (k, 6,,).
The difference is in the image generic: we will have jiyo(G) # G x Ggp.
Instead,

Jwo(G) = G x Ggn
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where 5™ is the sequence of sets of indiscernibles obtained from 57 by

removing the ordinal d,, from s£; that is, s} = s& \ {d,} and for o > 6%,
st = sh.

It is not entirely obvious that there is an extension of W to a V[G]-
ultrafilter that has this restricted ultrapower embedding, image generic, and
seed. To show that W,? exists, we need to prove that there is an elementary
embedding ¢ : V[G] — N[G x Ggn] extending iV o jy such that £(G) =
G x Gz» and

(1) N[G x Ggn] = HulVIO* s (¢ [V[G)] U {(k,6,)})

Then by Corollary 2.3, £ = jyo where WY is the V[G]-ultrafilter on k x &
derived from ¢ using (k, dy,).

To show that ¢ exists, let U, denote the n-th iterate jy=(U) of U, and
note that U, is an N[Ggzp]-ultrafilter on §,, although U,, is not an element

of N[Gzp]. By Lévy-Solovay, U, generates an N|[G x Ggp|-ultrafilter U}
and jux [ N[Ggzp] = j(]]Vn[GgD]. We will set

(2) ¢ = jus o jp~

.- . . NG, . .
By Proposition 3.5 applied in Vp, jgn[ sl iP = iP, and therefore

(1V =jusojp | V= (jus | N[Gsp])o (i¥ o jp) =i ojp.

Namely ¢ extends i o jp; moreover, Proposition 3.5 ensures that jy, (Gs) =
Gsn, and combiniting with Proposition 3.7 we have that

UG) = ju:(ip+(GQ)) = ju: (G x Gz) = G X Ggn.

This verifies that ¢ has the correct restricted embedding and image generic.
Finally, we verify (1). Let H = HullVIG*Gsl(g [VIG]] U {x,6,}). Since
N[G x G5| = V[G]p~=, we have

N[G x Gg] = HullVIe*Cl (. [V[G]] U {x})

To show N[G x Gg] = H, it therefore suffices to show that jp«[V[G]] is
contained in H. For this, since jp~ [ V = £ | V, it is enough to show that
Jjp=(G) € H. But jp+(G) = G x Gy is definable from ¢(G) = G x Gz» and
dn, as , roughly speaking, Gz = Gzn U {d,,}. Since jp~(G) is definable from
parameters in H, it belongs to H.

Remark 4.3. Note that we defined the extension W0 essentially by removing
a single ordinal from 57, to obtain ™. One might be tempted to define other
similar extensions of W, instead using sequences ¢ obtained by removing
more elements of §”. But in fact, using such a sequence ¢ in our specification
of the three ingredients that constitute a lift of W would be fallacious,
because these ingredients do not correspond to any ultrafilter in V[G]. The
reason is that removing any element of §° other than 6, makes Equation
(1) above false.
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We note the following theorem, which follows from the foregoing analysis
of W7:

Theorem 4.4. In V[G], for any normal ultrafilter F' on k, there is a non-
trivial elementary embedding from V[G|r to itself.

Proof. By Kaplan’s theorem (Corollary 3.8), F' = D* for some normal ultra-
filter D of V. As above, let U = jp(U)s- and let U* be the V[G] p--ultrafilter
generated by U. Then (V[G]p+)uy+ = VI[G|p+, and so ju : V[G]p+ — VI[G]p-
is a nontrivial elementary embedding. ]

4.2. Classifying the extensions of W. In this section, we prove the
special case of our classification of ultrafilters in V[G] for the ultrafilter

W =3 "pUs)-

Theorem 4.5. If W is a countably complete V[G]-ultrafilter extending W,
then W = W} for some i € {0,1} and n < w.

This proof contains most of the key ideas of the classification and avoids
some notational difficulties involved in propagating the result to arbitrary
ultrafilters.

Proof. Let W be an extension of W to a V[G]-ultrafilter. Since W extends
W, the Rudin-Keisler projection of (mg).(W) of W using 7 extends D,
where 7 : kK X K — K denotes the projection to the first coordinate . By
Kaplan’s theorem (Corollary 3.8), it follows that (7)+(WW) must be equal
to D*. Therefore there is an elementary embedding & : V[G]p« — V|Gl
such that ko jp+ = jyr and k(k) = k.

Note that [id]y = (k, 0) for some ordinal § > k. Let n be the least ordinal
such that k() > § and let U denote the V [G]p+-ultrafilter on 7 derived from

k using 8. By Corollary 2.3, k = jz and [id]; =6 .

Claim 4.6. For some n < w, 0 = 8, and either U = U} or {6} € U, so U
18 principal.

Here U} is defined as in the paragraph preceding (2). Granting this claim,
it is easy to see that either W = W2 or W = W}, Indeed if {6,,} € U then
Jji7 is the identity and jiz = jp+. Then W is derived from jp« using (k, dy,)
which is by definition the ultrafilter W2. If U = U}, then W is derived from
Jus © jp+ using (K, d,), which is by definition wo.

To prove the claim, we analyze the N-ultrafilter U=UnNN. We will
show that for some n, either U = U, or {§,} € U. The claim then follows
since in either case, U generates an N[G x Gg]-ultrafilter.

The analysis of U is an application of Lemma 3.15 in the case M = Vp and
i = i, which implies that either U has the desired form or else U = if} (U).
But the latter cannot occur, because U extends to a countably complete
V[G]p+-ultrafilter (namely, U), whereas iJ),(U) does not since if) (§) has
countable cofinality in V[G]p+. Orheorem 4.5
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4.3. Some other ultrafilters. We describe a slight variant of the classifi-
cation from the previous section when the second ultrafilter in the sum does
not come from the image of U. We start with any normal ultrafilter D on
k. For each a < &, let

d(a) = min(A \ «a)
and let Zs,) # Us(a) be a normal measure on 5(a).® Let

W =3 Zsa
D

Again, one lift of W is the canonical extension W*.

In this case there is no analog of the ultrafilter W’ considered in Section
4.1 since Z = [a = Zj()]p cannot be absorbed into iP: the first ultrafilter
applied in P is U # Z.

However, we still have the analogues of the ultrafilters W2. Indeed, let
us specify the ultrafilter W0 in this case by listing the three ingredients.
The major difference is the restricted ultrapower embedding associated with
W9, which is no longer equal to i o ji-. Instead, the restricted ultrapower
embedding is #/v" 0w U)) o jin o ji and the seed is (k, dn) where as before
n = jun (). The image generic: we will have jy0(G) = G xGgn where §™ is
defined as follows: let 7 be the sequence of sets of indiscernibles obtained by
the complete iteration of jym (i (U)) and let §™ be the sequence obtained
by adding dg,...,0n—1 to 7.

The proof that these three ingredients constitute a valid lift of W is as
in the previous sections, as is the proof that the ultrafilters W2 exhaust all
lifts of W to V[G].

5. CLASSIFICATION OF ULTRAFILTERS IN THE MAGIDOR EXTENSION

Let A be a discrete set of measurable cardinals with supremum x, and
let U = (Uy : v € A) be a sequence of normal measures U, on o. Our goal
in this section is to classify the extensions of sums of normal ultrafilters to
V[G] where G C P, is V-generic for the Magidor iteration of U. We begin
with Section 5.1 by defining a family of extensions of a given sum of normal
ultrafilters and analyzing the relationship between their ultrapowers. Then
in Section 5.2, we show that this family exhausts all extensions of the sum.

5.1. Extensions of an iterated sum of normal ultrafilters.

Definition 5.1. Let M be a transitive model of set theory.

e A finite iteration of M is a sequence (D, : m < n) such that for
each m < n, Dy, is a Mp, ... p,,_,-ultrafilter.

5Under UA, the existence of distinct normal measures on « implies o(k) > 2, so the
situation described here cannot occur unless («) is a limit of measurable cardinals. Since
we are considering discrete sequences U , it is reasonable to consider the case where no
element of U is a limit of measurables.
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o Let M,, = Mp,,...p,,_, and jmom; : Mm, — My, be the iterated
ultrapower embedding j Dimgr-Diny -1+

e An iteration is internal if for each m < n, D,, € M,,.

e An iteration is normal if for each m < n, D,, is a M,,-normal
ultrafilter on d,, and dg < §1 < ... < dp_1.

We say that an iteration (Dy, ..., Dj,—1) is below an ordinal ~ if for each
m < n, Dy, is an ultrafilter on 0,, < jp,....D,, . (7)-

)

Definition 5.2. The sum of a normal iteration (Dy,...,D,_1), denoted
Y(Do, ..., Dp—1), is the unique ultrafilter W on " such that jw = jp,... p,_,
and [id]w = (09,01, ...,0,—-1), where k is least such that (Dg,...,Dy_1) is
below k.

The following theorem [6, Theorems 5.3.8 and 5.3.13] explains why it is
natural to consider such sums in our classification:

Theorem 5.3 (UA). Assume that there is no cardinal k with o(k) = 2%".
Then every countably complete ultrafilter is Rudin-Keisler equivalent to the
sum of a normal iteration.

Fix an internal iteration (Dy, ..., D—1) of normal ultrafilters. Our plan
is to classify all extensions of (D, ..., D,_1) to V[G] where G C P, is V-
generic. The first step is to define a countable family {¥(Do, ..., Dp—1)4}uz
of extensions of X(Dy,...,D,_1), associated to some finite parameters u, .

Let d be the set of m < n such that d,, € jom(A), and let d’ be the set of
m € d such that D,, = jOm(ﬁ)(gm.

We will associate to each u : d — {0,1} and = : d — w an extension
(Do, ..., Dp—1)% of ¥(Dg,...,Dn—1). Let us briefly explain the role of
these parameters in terms of the three ingredients that determine the ex-
tension W = %(Dy, ..., Dy—1)% (The “three ingredients” framework is in-
troduced Section 4.1.) Note that the seed [id]y; has the form (005 - -+ 0n_1).

The number u(d,,) € {0,1} will determine whether or not 4,, is a Prikry
point in the image generic ji-(G). The number 2(6,,) < w determines how
many Prikry points are below bm in the first Prikry sequence above Om.-

By recursion on m < n, we define a V[G]-ultrafilter W,,, = (D, ..., Dp—1)%
extending W,,, = X(Dy,...,Dm—1). We will also define an external itera-
tion (FEy, E1, ..., Em—1) of Vi, below §,, whose well-founded last model P,
VG
i
e Let ey, : Viy,, — Py, be the iterated ultrapower by (Ey, ..., Ep—1).
e Let i : P,, — N,, be the complete iteration of Py, by e, (jw,. (U))

above k.

completely iterates into (V). More precisely,

We will maintain that the following hold:
® Nm = ij (V)
 ji, |V =i"oenojw,
o i oep([idlw,) = lidly
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This ensures, in particular, that the ultrafilter W, lifts W,,.

Fix m < n and assume that we have already defined W,, and the associ-
ated external iteration (Ey, ..., Ey,—1) satisfying the bullets above. We will
define W,, 1 and E,, and show in Claim 5.5 that our recursive hypotheses
are maintained.

Let ¢ : Viy,, — Ny, be the composition iPm o e,,. We will define an
Np,-ultrafilter f)m extending

{i(A)nn: A€ Dy}
for some 17 < i(8,,). The ultrafilter D,, will generate a V[Glyp, -ultrafilter,

which we denote by Dy;", and we will set W, 11 = (W, D). Therefore
in the end we will have W,, = X(Dg™", ..., D"")).

Ifm ¢ d, D,, = i(Dyy) and E,, is the principal P,-ultrafilter concentrated
at e (0m).

Now suppose m € d, in which case D,, will depend on v and z. Define
By to be the external ultrafilter e, (jw,, (0)s, )*™. For each 8 less than

the length of the complete iteration of Py,, let 65, = z'é)gl (em(0m)) and Df, =
ig§ (em(Dm)).

Let a be the first stage of the complete iteration of P, such that crit(igg 1)
6%, If m € d’ and u(m) = 1, let D,, be the principal ultrafilter concentrated
at (%ﬂ(m). Otherwise, let f)m = Df‘;w(m).

We have {i(A)Nn:Ae€ Dy} C Dy, where

i(Om) ifmé¢d
n={ a4 1 med and u(m) =1
5?,2+x(m) otherwise

Claim 5.4. D,, generates a V|G, -ultrafilter D"

Proof. The proof is by cases. In the first case when m ¢ d we appeal to
Theorem 2.13. In the second case, when m € d' and u(m) = 1, Dy, is
principal and therefore trivially generates a V|Gl -ultrafilter. In the last

case, D, is a ~v-complete Np,-ultrafilter on v = 5%+m(m), so it generates an
ultrafilter by Lévy-Solovay. O

Finally, define o o
W1 = (Wi, D5,
To complete the induction, we must prove the following claim:

Claim 5.5. Ny,11 = ijH(V); Tpn 1V = iPm+1 0 eyt 0 dw,, ., and

Z'Pm+1 o €m+1<[id]Wm+1) = [id]Wm-H ’

Proof. We consider the three cases. For the first case, assume m ¢ d. Let
Gy be the Np,-generic filter given by the sequence of sets of indiscernibles
associated with the complete iteration i¥». By the induction hypothesis,
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VIGly, = Nm|[G x Gp]. By definition, in this case, Dy, = i(Dy,). Let Df,
be the Ny, [Gy]-ultrafilter generated by D,y,.

Dy
ViCly, —— ViGlw
ul Ul

D;,
Nin|Gm] — Nim41[Gm1]

Ul Ul
Jpg, Nm
Ny — 2 N
T, Fm+1

Ipg, (@):%0

Pm, N,

ia,oo m+1’jD9n (O!)
jDQn [N, o T Pm+1
@i o (@)
m
Dy,
Nm,a ” Nm—i—l,a
AN AN
iPm P
0, ZO,a
DO

m

P, —— P

€m Em+1

_
VWm D m VWm +1

FIGURE 2. The case that m ¢ d

Note that by Lévy-Solovay,

Jpy® [ N [Ga] = Jps

m

The key point is that
(3) Jpr el Now = ipo, 1 N

To see this, let a be the least ordinal such that crit(igjg +1) > em(dn) and
consider the model Ny, o[Gy, | 8%]. Note that G, | &9, is No,m-generic
for a forcing which has smaller cardinality than the critical point of the
embedding zgrgo So by the Lévy-Solovay argument, igjgo lifts to an embed-
ding 7%, o © NpmalGm | 69.] = NG | 69,]. Tt is easy to see that i,

is the complete iteration of Ny, o[Gm | 59 | via the canonical lift of the se-

m
quence g™ (em(T)) | (69, 00). Moreover N,,[G,y] is the generic extension of
the final model of this iteration by the filter obtained from the associated
sequence of sets of indiscernibles. Therefore we can apply Lemma 3.4 in
N [Gm | 69)] to conclude that Ny, [Gy,] is closed under 69,-sequences from
NG T 02].
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Note that
. P, _ Pm .
(4) JDg Oty = Z07a+1 °© Jpo, -
This follows once we prove that igg“ = iéafg [ Ppny1. This is a routine

induction on 8 < « using that crit(jpg) is greater than all the measurable

cardinals appearing in the iteration i&g.
By Mitchell’s lemma (Lemma 3.10) applied in P, with W = D9

N, [Gm 8, .
dprel6mtnd = G0 1 NinalGin 1 03,)-

Since Ny, [Gry] is closed under §9,-sequences from Ny, o[G, | 69,], this implies
that

N [Gm Nom.a[Gm 162, .
(5) jomieml = jimelGmlonl | N (Gl = Dy, | NinlGin

which proves (3).
By definition of ep41, emi1 = em [ Vw,,,, ensuring that

JDY, © €m = €m41 0 JD,,-
.P . .P
Also, i m+1 = jpo (i"™). We have

. .P, _ N[Gwm] _.P, _ - Py :Pmi1 . P
Jpyz o™ =jp, o™ =jpy ot =1"""o jnE
Moreover
P, - .
Jpo ©€m = €m+1© JDy,
m
Combining these equations, we get

Z'Pm+1 Z'Pm+1

Oemi1 O Jw = O €m+1 9 JDy © JWy,

= im0 T 0 e 0 i,
m

. P, .

= Jpyr 01 ™ O em © Jw,,

= jpy= o dw,, IV

=W, IV

To finish the case m ¢ d, by the normality of Dy;”, [id]pu= is the ordinal
B over which Dy;" is an ultrafilter. On the other hand, i+ (e, 11(6,,)) =
ign " (em(0m)) = B. Hence i+ (e ([idlw,.,,) = [idlyp, -

Next consider the case where m € d’ and u(m) = 1. By definition D,,
is Pgacta(m) the principal ultrafilter concentrated at 6fn+m(m). The following
diagram commutes:
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V[G]Wm p§a+z(m) V[G]Wm+l

Ul Ul
NG W Niny1|Gm1]
Ul " Ul

Ny ————— Npi

p6a+x(m) N
P, m
7“od»ac(m)JrZ,oo
P, 1
Jatz(m)+2 ZaTIoo
\p‘sgfj(m)
Nm,aer(m)Jrl Nm-i—l,a—i—l p
p§a+x(m) A~ 3t m+1
iPm D%er(m) N}ﬂ
Da+x(m
m
Nm,oH»x(m) ? Nm—l—l,a
(Em) o (Em)
Do 7;gm,+1
m / NeY
Nm,a Nm,a
P, T
o0 i/a
Dy, / Em
Py, = Prit
em em o

F1GURE 3. The case that u(m) = 1.

The commutativity of the second square from the bottom is proved as in
Equation 4. The only other part of the diagram whose commutativity is not
immediate is

.Pm+1 . . . . T{VL
ZO,oz O JE, = ngg(Em) o ZO,a

where P! = en,(Viv,,,,) and iopi’lg : P, — N}, is the o stage of the
complete iteration of P! by em(jwmﬂ((_j)) above k.

iy (Em)
m,o Nm+1,04

~P7,n iPm+1
20,a 0,
E

P~y P

!/

This commutativity is true since

’ /

N, . N’ Ppi1 . P
j-PZa ]Em r m,x and ZOTCHY jEm(ZOZ)

i (Em) . ; ;
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/
(Em)

I' N o Slnce E,, € P, we can use Kunen’s
)

We include some details on how to show ] =JE, | N{m o For this, we

_ Nm a
() il (B
commutlng ultrapowers lemma, as it appears in Woodin’s [14, Lemma 3.30],
to conclude that

use that ]

Nma _ Py
]Z(I;’S(Em) JEmf m,a-

(We apply Woodin’s lemma in P, with j = 20 " and F = F,,. Note that
some of the generality of Woodin’s lemma is not necessary here since j is
definable over P,, rather than generic.)

Since ij+1 = Jyp,, then the commutativity of the diagram in Figure 3
can be used to deduce that

ij+l r V = ij r V = ZPm ©em O]Wm - iPm+1 0 em+1 Oij+1‘
In particular,
Npy1 = Ny = ij(V) = ij+1 (V)
Finally, we show that i+ o e,,, 11 ([id]w,,,,) = [id]y, .- By the induction
hypothesis it suffices to show that i7m+1 (e, 41(5,)) = goste

m):

/

ifm (em+1(6m)) = ig?ggl(@?gzﬂ (em+1(0m))) = Pm+1 (J; i (B )(i(l)D,T& (em(0m)) =

= igoo (] bm (Em)(i(%gz(em((sm)) — ngggl (5a+m(m)) _ 5%+x(m)‘

Finally consider the case where where either m € d \ d’' or m € d' but
u(m) = 0. Let ¢ be the restriction to N,, of the ultrapower embedding

of Nipata(m) DY D%+x(m). Note that the bottom part of the diagram in
Figure 4 is identical to the bottom part of the diagram in Figure 3 and in
particular it commutes. In fact the whole diagram commutes and the key
to that is that the embedding ¢ is the restriction to IV, of ij[Gm}

D* is the Np,[Gp,]-ultrafilter generated by D D&M The justification for
this is as in Equation 5. The commutativity of the rest of the diagram is a
straightforward verification, and the remainder of the proof of the claim in
this case is then identical to the previous part.

This completes the proof, but let us note here that in the case where
m € d’ we obtain

where

N1 =, (V) = jw,, (V) = Ni.
This is because in this case Np11.0 = Ny aya(m)+1- Moreover,

(6) V[G}W = Nm+1[G X Gm+1] = Nm[G X Gm] = V[G]W

m—+1 m

Indeed G, and G,,41 differ by exactly one ordinal since they are given
the sequences of sets of indiscernibles associated with essentially the same
complete iterations (see also Proposition 3.5). O
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DY
ViGly,, —— VIGlw,..,
Ul Ul
D*
Nm[Gm] — Nm—l—l[Gm—i—l}
Ul Ul
N, s N,
m 7 {Vm+1
. P, P
7'anvfz(m),oo Za’,,gjl
Da+:n(m)
m
Nm,a—i—x(m) ? Nm+1,a
i (Em) o (Em) N
Dfr‘z / 20$+1
Nm7a Nm,a
) AN ,
i io
DY E
Py, m j= " P
€m €m %ﬂ
Dy,
_—
VWm VW’HH»I

FIGURE 4. The case where u(m) # 1

Lemma 5.6. Fix an internal iteration (Do, ..., Dyp—1) of normal ultrafilters,
let d and d' be as in the paragraph following Theorem 5.3. Suppose that d =
d and firuw:d— {0,1} and v : d — w. Let W = >_(Dy, ..., Dy_1)%. Then
in V[G] there is an internal iteration (Fu, ..., Fy—1) of normal ultrafilters such

that V[G]W = V[G}Fo,...,Fg_l .

Proof. An easy induction using the definition of > (Do, ..., Dp—1)% in the
case d = d'. Note that in the case that m ¢ d, Dy;" is an internal nor-
mal ultrafilter of V|Gl . If m € d then m € d' by our assumption and
V|G, = VIGhy,,,, which follows by Equation 6 if u(m) = 0 or since Dp;"
is principal in the case that u(m) = 1. O

5.2. Classifying the extensions of sums of normals. In this section, we
classify the extensions to V[G] of sums of normal ultrafilters; i.e., ultrafilters
of the form X(Dy,...,D,). As expected, the proof is by induction on n.
Recall that given a finite iteration (Do, ..., D), we define d = d(Dy, ..., Dy,)
as the set of all m < n such that d,, € jom(A) and d' = d'(Dy, ..., D) as

the set of m € d such that Dy, = jo.m(U)s,, -
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Theorem 5.7. Let W be a countably complete V[G]-ultrafilter extending
Y(Do, ..., Dy). Then W = X(Dy, ..., Dy)% for some u : d — {0,1} and
r:d—w.

Proof. We follow a similar argument to the one in Theorem 4.5. Suppose
inductively that we have classified the extensions of W,,, = 3(Do, ..., Dy—1)
and let us classify the extensions of W,,,11 = 3(Dy, ..., Dy,). Let Wit be
an ultrafilter on k™1 extending of Wy, 41 to a V[G]-ultrafilter. Note that
lidly, ., = (80, ...0m) for some increasing sequence of ordinals. Therefore
there is a factor map & : Vi, ., — ij+1(V) such that I s IV =
ko jw,... and k(lidlw,,.,) = [idlw_ .

Since Wi,11 extends Wi y1, Te(Wpny1) extends Wy, where 7 : s™1 —
k™ denotes the projection to the first m-coordinates. By the induction hy-
pothesis, it follows that 7. (W 1) must be equal to W,,, = %(Dy, ..., Dy1)l
for some v, 2’. Therefore there is an elementary embedding £ : V|Gl —
V[G]Wm-H such that ¢ Oij = ij-H and E([’Ld]Wm) = ((50, -'-75m—1)-

Let n be the least ordinal such that ¢(n) > d,, and let U denote the
V[Glyp, -ultrafilter on 1 derived from ¢ using 6m. By Corollary 2.3, £ = JT
and [id];z = 0. Let ey, 1™, N, be defined as before (after Theorem 5.3)
for W,, = Z(DO,..,Dm_l)gf, and denote by i, = iéjfg oem : Viv, =& Np
and let i = ip00 = itm oe,,. Let U=0Un N, then there is a factor map
kg o (Nm)g — ij+1(V) such that ji [ Ni = kg o ji and kg ([id];) = 0m.
Then the following diagram commutes:

/

I i
VG - » VGl v VG, .,
Ul Ul
Ul N, —% (Nm)g —— J'WMI(V)
LN v IDm s Vivo,

F1GURE 5. The decomposition of ijH.

We claim that i[D,,] C U. To see this, let X € D,,, then
[id] p,, € 7D, (X) = bm € k(jp,, (X))
= kg ([idly) € ky (g (i(X)))
= lid]y € jg(i(X)) = i(X) e U
Next we will prove that U is equal to one of the following ultrafilters:
e i(Dy,).
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® psat+n for some n < w.
m
e D" for some n < w.

Once we prove the above, it will follow that U is the ultrafilter that was
denoted by D,, which by the previous part generates the ultrafilter Dy;”
in V[Glyy, . Hence U = Dy;” for an appropriate extension of u', 2’ to u,x
determined by the value of U. This will end the proof as by definition,
Wini1 = S(Wp, U) = S(Wp, D) = S(Dg, ..oy Dy )

T

Let « be the first stage of the iteration such that the critical point of igjgo

is at least iq(0m). We will show that i5m [io(Dm)] C U. Note that every
generator of i, is less than i4(d,,); this follows from our choice of « and the
fact that e,, is an iteration of ultrafilters on cardinals below d,,. Similarly,
iq is continuous at d,, and therefore iy[D,,] generates iy[D;,] U F, where F
is the tail filter on iy (d,,). Applying Lemma 3.12 we conclude that iq[Diy]
generates iq (D). Since i[D,,] C U it follows that it lia(Dm)] C U.

We first consider the case where m ¢ d, meaning 6,, ¢ jom(A). Hence
crit(ifm.) > ia(dm). It follows that U =io(Dpm) = i(Dy).

Now suppose that m € d, namely d,, € jom(A). The analysis of U is an
application of Lemma 3.15 in the case M = NZ', i = z'gjgo and the ultra-
filter i (D,,) which is a normal ultrafilter on i, (d,,), the minimal ordinal
in the remaining part of the complete iteration igjgo as computed in Ny, 4.
We conclude that either U has the desired form or else U = tatw(Dm)-
But the latter cannot occur, because U extends to a countably complete

V[Glp, -ultrafilter (namely, U), whereas iqtu(Dim) does not since iq-4u(dm)
has countable cofinality in V[G]Wm' O Theorem 5.7

6. APPLICATIONS

Our first application resolves the problem of whether Weak UA is equiv-
alent to UA (see [6, Question 9.2.4]).

Lemma 6.1. Assume that the Mitchell order is linear on normal ultrafilters,
and that for every o-complete ultrafilter U there is an internal iteration of
normal ultrafilters (D, ..., Dy—1) such that Viy = Vp,.p,_,. Then Weak
UA holds.

Proof. Granting the linearity of the Mitchell order on normal measures,
[6, Prop. 2.3.13] states that the Ultrapower Axiom for normal ultrafilters
holds. It is then not hard to show that the Ultrapower Axiom holds for
internal (finite) iterations of normal ultrafilters (see for example the proof
[6, Prop. 8.3.43]). By the second assumption of the lemma, this suffices
to compare (without commutativity) every two ultrapowers of o-complete
ultrafilters. (|
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Lemma 6.2. Suppose that the Mitchell order is linear in V and that each
normal ultrafilter of V[G] is generated by an ultrafilter of V. Then the
Mitchell order is linear in V|[G].

Proof. Let U, W € V|G| be distinct normal measures on a cardinal k. Let
Up=UnNV and Wy =WNV. Then Uy, Wy € V generate U, W respectively
and therefore they are distinct normal measures in V. Suppose without loss
of generality that Uy<Wjy, and let k : MI/‘I/,0 — jw (V) be the factor map. The
critical point of k is greater than s (since both are Wy and W are normal).
It follows that Uy C k(Uy) € jw (V) € My . Since V[G] and My have the
same subsets of k, k(Up) also must generate U € My . O

Corollary 6.3 (UA). Assume GCH and that k is the least measurable limit

of measurables. Let U be the sequence of normal measures on all the mea-
surables below k. Let G be V-generic for P,,. Then V[G] = weak UA+-UA.

Proof. By [6, 2.3.1], in V the Mitchell order is linear and since every nor-
mal ultrafilter in V[G] is generated by a ground model normal measure,
the previous lemma can be used to infer that the Mitchell order is linear in
V[G]. Therefore by Lemma 6.1, it remains to prove that every ultrapower
by a o-complete ultrafilter in V[G] is equal to an ultrapower by a sum of
normals. Let U € V[G] be a o-complete ultrafilter. Since « is the least mea-
surable in V[G], U is k-complete there. By [5], Uy = U NV is a k-complete
ultrafilter on x in V', and by Theorem 5.3, Lemma 5.6, and Theorem 5.7, we
obtain V[G]y = V[G]w where W is the sum of a finite iteration of normal
ultrafilters.

To see that UA fails in V[G], note that in V[G], by Theorem 4.4, there
is an ultrapower M of the universe that admits a nontrivial elementary
embedding k£ : M — M. This would be impossible if UA held in V[G].
The reason is that assuming UA, by [7, Thm. 5.2] there is at most one
elementary embedding j : V[G] — M. Therefore ko j = j,. and so by a
standard lemma on the Rudin—Keisler order (proved for example in [7, Cor.
4.29]), k would be the identity. O

We note that the GCH assumption can be replaced by an argument using
UA to show that no new V-measures appear in the extension.

Our final application is to a natural question. Can two countably complete
uniform ultrafilters on distinct cardinals have the same ultrapower? That
is, given such ultrafilters Uy, Uy, can Vi, be equal to V7,7 One obstruction
is the following;:

Proposition 6.4. Suppose that Uy and Uy are countably complete uniform
ultrafilters on regular cardinals ko and k1, and assume Vi, = Vi, Then
Ko — R1.

Proof. Since jy, and jy, are elementary embeddings from V' into the same
inner model, we can appeal to a theorem of Woodin [7, Theorem 3.4] to
obtain that jy, | Ord = jy, | Ord. Assume without loss of generality
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that k9 < k1. Then since U; is uniform on ki, jy, is discontinuous at
k1. It follows that jy, is discontinuous at 1. Since sy is regular and jy, is
discontinuous at k1, we cannot have ko < k1 by [6, Lemma 2.2.34]. Therefore
Ko = R1. |

The following example shows that the assumption above that kg and
are regular cardinals is necessary. It also demonstrates one of the complica-
tions arising in the attempt to extend our results on extensions of k-complete
ultrafilters on x to arbitrary countably complete ultrafilters.

For the remainder of the paper, let A be a measurable cardinal and let
Kk > X denote the least limit of measurable cardinals of cofinality A. Let
A denote the set of measurable cardinals strictly between A and k, and let
U:A—>V assign to each such measurable cardinal a normal ultrafilter.
Finally, let P,; be the descrete Magidor product of Prikry forcings associated
with U and let G C P, be V -generic.

Lemma 6.5. If D is a normal ultrafilter on X\, then jg[G} [V =1iojp where

1: Vp — N is the complete iteration of Vp by ]g(ﬁ) | (k, 35 (k). Moreover
jg[G](G) = (GNVp) x Gz where § is the sequence of sets of indiscernibles

associated with the complete iteration of jg(ﬁ) I (K, 1 (K)).

—

Proof. Note that G N Vp is Vp-generic on P, (jp(U) | k), and therefore by
the Mathias criterion and Lemma 3.4,

H=(GnNVp)xGg

is N-generic on io jp(P). Moreover, if p € G, then jg(p) [ k€ GNVp and
ib(®) 1 (k,jp(k)) is a pure condition, and so i(j5(p)) € (GNVp) x Gz Tt
follows that ¢ o jp : V' — N lifts to an elementary embedding j : V[G] —
N[H] with j(G) = H.

To show that j = jg[G] it suffices by Corollary 2.3 to show that N[H] =
HullMH(5[VIG]] U {A}). Since i[Vp] = HullY (j[V] U {A}), we have

i[Vp]U{Gs} € HMHI (V]G] U {A})

and N[G5 € HUIVH(GIV[G]] U {A}) by Lemma 3.4 applied in Vp. Since
N[H] = N[G3][GNVp] and N[G5]Uu{GNVp} € HuUlVHIGV[G] U {A}), it
follows that N[H] = HullNH(j[V[G]] U {\}), as desired. O

Proposition 6.6. In V|G|, there are countably complete uniform ultrafilters
on A and k with the same ultrapower.

Proof. Let D be a normal ultrafilter on A. Let f : A — V,; be the increasing
enumeration of U , and let U = [f]p. Then in Vp, U is a normal ultrafilter
on the least measurable v > k. Finally, let W = ¥(D,U). Then W is a
uniform A-complete ultrafilter on 2.

We claim that there is an extension W* of W to a uniform A-complete

V[G]-ultrafilter on 2 such that V[G]w+ = V[G]p.



34 TOM BENHAMOU AND GABRIEL GOLDBERG

We will define W* as the analog of the canonical lift of W (defined in
Section 3.1) to this situation. The restricted ultrapower of W* will be the
elementary embedding i o j“,/[, where ¢ : Viy — N is the complete iteration

of Viy by jw(U) | (k,jw(x)). The image generic will be (G N Viy) x Gy
where  is the sequence of sets of indiscernibles associated with the complete
iteration of jy(U). The seed will just be i([id]y). These three ingredients
uniquely determine W*, and it is not hard to verify that a V[G]-ultrafilter
W* O W with these invariants exists.

Note that the complete iteration of Viy by jw (U) | (k, jw (k)) is just the
tail of the complete iteration of Vp by jD([j) I (k,jp(k)) after applying
the first measure. Therefore by Lemma 6.5, V[Glw+ = N[(GNN) x G{f =
V[G]p, noting that the sequence ¢ differs from the sequence § of sets of
indiscernibles associated with jp(U) | (k,jp(k)) by just one ordinal.

It remains to show that W* is a uniform ultrafilter on 2. The reason is
that jy~ | V[G]x = jg[G] [ V[G]k, while jy+ # jg[G], the latter following
from the fact that

inlG) = G x G5 # G x Gr = jw-(G)

If W* were not uniform on k2, then W* would be RudinKeisler equivalent
to an ultrafilter Z on some v < k derived from jy+ and some & < jy« (7).
But then Z is also derived from jp and £, so W* <gpg Z <gg D. Since D is
normal and W* is nonprincipal, it follows that D and W* are Rudin—Keisler

equivalent, contrary to the fact that jy~ # jg[G], H

7. PROBLEMS

We list out a few related problems we did not address:

Question 7.1. Can we characterize all the o-complete extensions of a o-
complete ultrafilter on V after the discrete Magidor product? In particular,
are there only countably many extensions?

Question 7.2. Can we characterize the o-complete extensions of sums of
normals after other types of iterations of Prikry forcing?

Question 7.3. Working over any ground model V', can we find a characteri-
zation of all the extensions of a countably complete ultrafilter to a countably
complete ultrafilter after the discrete Magidor product?

We conjecture that if k is strongly compact then after a discrete Magi-
dor product below k, there is a k-complete V-ultrafilter over x which has
uncountably many lifts.

Question 7.4. Is there a forcing that preserves UA and adds a subset X
to the least supercompact cardinal x such that X ¢ V[Y] for any Y C V of
cardinality less than 7
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