UC Berkeley Summer Undergraduate Research Program 2015 July 9 Lecture

We will introduce the basic structure and representation theory of the symplectic group $\operatorname{Sp}(V)$.
Basics Fix a nondegenerate, alternating bilinear form $\omega: V \times V \rightarrow \mathbb{C}$, where V is a finite dimensional \mathbb{C}-vector space. This means that

1. $\omega(u, v)=-\omega(v, u)$
2. $\omega(u, V)=0=\omega(V, u) \Longrightarrow u=0 \in V$,
3. $\omega(a u+b v, w)=a \omega(u, w)+b \omega(v, w)$.

Let $e_{1} \neq 0$. Then, by (2) there is some $f_{1} \notin \operatorname{span}\left(e_{1}\right)$ such that $\omega\left(f_{1}, e_{1}\right) \neq 0$; scaling we may assume that $\omega\left(f_{1}, e_{1}\right)=1$. Let $U_{1}=\operatorname{span}\left(e_{1}, f_{1}\right) \subset V$. The subspace

$$
U_{1}^{\perp}=\left\{v \in V \mid \omega(u, v)=0, \text { for all } u \in U_{1}\right\} \subset V
$$

satisfies $U_{1} \cap U_{1}^{\perp}=\{0\}$ (why?). Nondegeneracy ensures an isomorphism

$$
V \rightarrow V^{*} ; v \mapsto \omega(-, v),
$$

so that we can identify the annihilator $U_{1}^{\vee} \subset V^{*}$ with some $\operatorname{dim} V-2$ subspace $V_{1} \subset V$ via this isomorphism. Moreover, $U_{1} \cap V_{1}=\{0\}$, and $\omega_{\mid V_{1}}$ is nondegenerate: if $\omega\left(v, V_{1}\right)=$ 0 then $\omega(v, V)=0 \Longrightarrow v=0$. Hence, by induction we can assume that V_{1} admits a basis $\left(e_{2}, \ldots, e_{n}, f_{n}, \ldots, f_{2}\right)$ such that $\omega\left(f_{i}, e_{j}\right)=\delta_{i j}$. Then, with respect to the basis $\left(e_{1}, \ldots, e_{n}, f_{n}, \ldots, f_{1}\right)$, the matrix of ω is

$$
J \stackrel{\text { def }}{=}[\omega]=\left[\begin{array}{ccccc}
& & & & \\
& & & & . \\
& & & 1 & \\
& & & -1 & \\
& . & & & \\
-1 & & & &
\end{array}\right]
$$

Remark: $J^{-1}=-J=J^{t}$
The symplectic group (with respect to ω) $\operatorname{Sp}(V, \omega)$ is the group of all operators on V preserving ω

$$
\operatorname{Sp}(V, \omega)=\{g \in \mathrm{GL}(V) \mid \omega(g u, g v)=\omega(u, v), \text { for all } u, v \in V\} .
$$

We have just seen above that any nondegenerate alternating form ω admits a basis such that the matrix of ω is J : this means that all such pairs (V, ω) (such a pair is defined as a symplectic vector space; a corresponding basis is called a symplectic basis) are equivalent, in the sense that, for any two such pairs $(V, \omega),\left(V^{\prime}, \omega^{\prime}\right)$, there is an isomorphism

$$
T: V \rightarrow V^{\prime}, \quad \text { such that } \omega^{\prime}(T u, T v)=\omega(u, v)
$$

In particular, we may as well choose $V=\mathbb{C}^{2 n}$, and ω to be the nondegenerate, alternating form

$$
\omega_{0}: \mathbb{C}^{2 n} \times \mathbb{C}^{2 n} \rightarrow \mathbb{C} ;(u, v) \mapsto u^{t} J v .
$$

Hence, we can restrict ourselves to the group

$$
\operatorname{Sp}\left(\mathbb{C}^{2 n}, \omega_{0}\right)=\left\{g \in \mathrm{GL}_{2 n} \mid g^{t} J g=J\right\} .
$$

We will denote this group $S p_{2 n}$: it is a subvariety of $\mathrm{GL}_{2 n}$ defined by the equations $g^{t} J g=J$. Hence, $\mathrm{Sp}_{2 n}$ is an affine algebraic variety such that its group operations are given by morphisms of algebraic varieties. Moreover, we see that

$$
\operatorname{det}\left(g^{t} J g\right)=\operatorname{det} J \Longrightarrow \operatorname{det}(g)^{2}=1 \Longrightarrow \operatorname{det}(g)= \pm 1
$$

Exercise:

1. If $g \in S p_{2 n}$ then $g^{t} \in S p_{2 n}$.
2. Let $g \in S p_{2 n}, v \in V$, such that $g v=\lambda v$. Show that there exists $w \in V$ such that $g w=\lambda^{-1} w$. Deduce that $\mathrm{Sp}_{2 n} \subset \mathrm{SL}_{2 n}$.

Tori, Weyl Group It can be checked that the intersection $T=\operatorname{Sp}_{2 n} \cap T_{2 n}$, with the standard maximal torus in $\mathrm{GL}_{2 n}$, is

$$
T=\left\{\left.\left[\begin{array}{llllll}
t_{1} & & & & & \\
& \ddots & & & & \\
& & t_{n} & & & \\
& & & t_{n}^{-1} & & \\
& & & & \ddots & \\
& & & & & t_{1}^{-1}
\end{array}\right] \right\rvert\, t_{1}, \ldots, t_{n} \in \mathbb{C}^{\times}\right\} \cong\left(\mathbb{C}^{\times}\right)^{n}
$$

Hence, T is a complex torus. Moreover, T is maximal.
You can think of T as being those operators on $\mathbb{C}^{2 n}$ that preserve ω_{0} and for which the symplectic basis is a common eigenbasis.

Let's 'guess' what we expect the Weyl group $W=N_{\mathrm{S}_{\mathrm{p}_{2 n}}}(T) / T$ to be:

- For GL_{n} we saw that the normaliser $N_{G}(T)$ consists of all those operators that preserved the set of lines defined by the common eigenbasis for $T \subset \mathrm{GL}_{n}$. When we divided out by the action of T we forgot about the scaling that we could have within each line, so that $N_{G}(T) / T$ was the group acting on the set of n eigenlines.
- You might guess that we simply permute all elements of the symplectic basis but this is not correct: if we swapped e_{1} and e_{2} then we would no longer preserve the form ω_{0} as $1=\omega_{0}\left(f_{1}, e_{1}\right) \neq \omega_{0}\left(f_{1}, e_{2}\right)=0$. A moment's thoughtand we see that permuting e_{i} and e_{j} means that we must also permute f_{i} and f_{j}. Hence, there should be a copy of S_{n} sitting inside W : it consists of those symmetries that preserve the pairs of lines $\left(\mathbb{C} e_{i}, \mathbb{C} f_{i}\right)$.
- We are allowed further symmetry: within each pair of lines $\left(\mathbb{C} e_{i}, \mathbb{C} f_{i}\right)$, we can swap the lines. However, when we swap the lines we must map $\mathbb{C} e_{i}$ to $-\mathbb{C} f_{i}$, in order that the symmetry preserve ω_{0}.
- Hence, we should think of the Weyl group of $S p_{2 n}$ as being the symmetry we have in any ordering of the 'symplectic planes' we choose. We expect there to be subgroups of W isomorphic to S_{n} - corresponding to swapping the pairs of lines $\left(\mathbb{C} e_{i}, \mathbb{C} f_{i}\right)$ - and $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ - swapping the lines within each pair (with the 'minus twist').

Fact: the Weyl group of $S p_{2 n}$ is

$$
W\left(C_{n}\right) \stackrel{\text { def }}{=} W \cong S_{n} \ltimes(\mathbb{Z} / 2 \mathbb{Z})^{n},
$$

where $\sigma \in S_{n} \subset W$ acts on $\left(a_{1}, \ldots, a_{n}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{n}$ by permuting entries.
For example, the representatives of the symmetric group appearing in W are of the form

$$
\left[\begin{array}{cc}
\sigma & 0 \\
0 & \underline{\sigma}
\end{array}\right]
$$

where $\underline{\sigma}$ is the permutation matrix obtained by reflecting σ in the antidiagonal. For example, if $\sigma=(12) \in S_{3}$ then we have

The element $\left(a_{1}, \ldots, a_{n}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{n}$ has representative a $2 n \times 2 n$ matrix $\left[c_{i j}\right]$ with

$$
\begin{gathered}
c_{i i}=c_{2 n+1-i, 2 n+1-i}=1, \quad \text { whenever } a_{i}=0 \in \mathbb{Z} / 2 \mathbb{Z} \\
c_{2 n+1-i, i}=1=-c_{i, 2 n+1-i}, \quad \text { whenever } a_{i}=1 \in \mathbb{Z} / 2 \mathbb{Z} .
\end{gathered}
$$

For example, in Weyl group $W\left(C_{2}\right)$ we have the following representatives for (12) $\in S_{2}$, $(1,0) \in(\mathbb{Z} / 2 \mathbb{Z})^{2},(0,1) \in(\mathbb{Z} / 2 \mathbb{Z})^{2}$

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Exercise: $W\left(C_{2}\right) \cong D_{8}$. However, $W\left(C_{n}\right) \neq D_{4 n}$ in general (why?).
Roots etc The character lattice of T is generated by the projections onto the $i^{\text {th }}$ diagonal entry. Denote these projections χ_{i}, so that $X^{*}(T)=\sum \mathbb{Z} \chi_{i}$.
We are going to determine the root system - for this we need to know the Lie algebra of $\mathrm{Sp}_{2 n}$. It is a fact that

$$
\mathfrak{s p}_{2 n} \stackrel{\text { def }}{=}\left\{X \in M_{2 n} \mid X^{t} J+J X=0\right\}=\left\{\left.\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \right\rvert\,{ }^{t} C=C,{ }^{t} B=B,-D={ }^{t} A\right\}
$$

where ${ }^{t} M$ denotes the transpose across the antidiagonal.
For example, we have

$$
\begin{gathered}
\mathfrak{s p}_{4}=\left\{\left[\begin{array}{llll}
a & b & e & f \\
c & d & g & e \\
h & i & -d & -b \\
j & h & -c & -a
\end{array}\right]\right\} \\
\mathfrak{s p}_{6}=\left\{\left[\begin{array}{cccccc}
a & b & c & x_{11} & x_{12} & z \\
d & e & f & x_{21} & y & x_{12} \\
g & h & i & x & x_{21} & x_{11} \\
y_{11} & y_{12} & w & -i & -f & -c \\
y_{21} & v & y_{12} & -h & -e & -b \\
u & y_{21} & y_{11} & -g & -d & -a
\end{array}\right]\right\}
\end{gathered}
$$

Then, $\mathrm{Sp}_{2 n}$ acts linearly on $\mathfrak{s p}_{2 n}$ by conjugation, and T admits a common eigenbasis: namely, they are the same basis vectors as we see for the above examples. For example, for $\mathfrak{s p}_{4}$ we have eigenbasis

$$
\left\{E_{11}-E_{44}, E_{22}-E_{33}, E_{12}-E_{34}, E_{21}-E_{43}, E_{13}+E_{24}, E_{14}, E_{23}, E_{32}, E_{41}, E_{31}+E_{42}\right\}
$$

and the weights are

$$
0, \pm \chi_{1}-\chi_{2}, \pm \chi_{1}+\chi_{2}, \pm 2 \chi_{1}, \pm 2 \chi_{2}
$$

If we let $\alpha_{1}=\chi_{1}-\chi_{2}, \alpha_{2}=2 \chi_{2}$, then we can write the nonzero elements above as

$$
\pm \alpha_{1}, \pm\left(\alpha_{1}+\alpha_{2}\right), \pm\left(2 \alpha_{1}+\alpha_{2}\right), \pm \alpha_{2}
$$

these are the roots of $\mathfrak{s p}_{4}$.
In the $\mathfrak{s p}_{6}$ case we have weights

$$
0, \pm \chi_{i}-\chi_{j}, \pm \chi_{k}+\chi_{I}, \quad i<j, k \leq l
$$

If we let

$$
\alpha_{1}=\chi_{1}-\chi_{2}, \alpha_{2}=\chi_{2}-\chi_{3}, \alpha_{3}=2 \chi_{3}
$$

then we can write the above nonzero weights

$$
\begin{gathered}
\pm \alpha_{i}, \pm\left(\alpha_{1}+\alpha_{2}\right), \pm\left(\alpha_{2}+\alpha_{3}\right), \pm\left(2 \alpha_{2}+\alpha_{3}\right) \pm\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right), \pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}\right) \\
\pm\left(\alpha_{1}+2 \alpha_{2}+\alpha_{3}\right), \pm\left(2 \alpha_{1}+2 \alpha_{2}+\alpha_{3}\right)
\end{gathered}
$$

these are the roots of $\mathfrak{s p}_{6}$.
In general, the roots of $S p_{2 n}$ (with respect to our choice of T) are

$$
R \stackrel{\text { def }}{=}\left\{\chi_{i}-\chi_{j} \mid i \neq j\right\} \cup\left\{\chi_{i}+\chi_{j} \mid i \leq j\right\} \subset X^{*}(T)
$$

and a set of simple roots are

$$
\alpha_{1}=\chi_{1}-\chi_{2}, \alpha_{2}=\chi_{2}-\chi_{3}, \ldots, \alpha_{n}=2 \chi_{n}
$$

This allows us to define the positive roots

$$
R_{+} \stackrel{\text { def }}{=}\left\{\alpha \in \mathbb{R} \mid \alpha=\sum n_{i} \alpha_{i}, n_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

and the negative roots $-R_{+}$.
For $\alpha \in R$, a root subgroup is a subgroup

$$
U_{\alpha}=I_{2 n}+a E_{\alpha}, \quad a \in \mathbb{C}
$$

where E_{α} is an eigenvector with T-eigenvalue α.
Proposition/Definition: The standard Borel $B \subset S p_{2 n}$ is the subgroup generated by T and $U_{\alpha}, \alpha \in R_{+}$. It is a Borel subgroup. It is the intersection $\operatorname{Sp}_{2 n} \cap B_{2 n}$ of $\operatorname{Sp}_{2 n}$ with the upper triangular matrices in $\mathrm{G}_{2 n}$.

We define the fundamental weights

$$
\omega_{1}=\chi_{1}, \omega_{2}=\chi_{1}+\chi_{2}, \ldots, \omega_{n-1}=\chi_{1}+\ldots+\chi_{n-1}, \omega_{n}=\chi_{1}+\ldots+\chi_{n}
$$

The corresponding Dynkin diagram is

This signifies that the angle between α_{i} and α_{i+1} is $2 \pi / 3$, for $i=1, \ldots, n-1$; the angle between α_{n-1} and α_{n} is $3 \pi / 4$; and all other angles between simple roots is $\pi / 2$. All of these angles are measured in the Euclidean space $\sum \mathbb{R} \chi_{i}$, with respect to the standard inner ($=\mathrm{dot}$) product.

The set of roots R is a root system: the reflections defined by each simple root α_{i} are

$$
s_{i}: \quad v \mapsto v-2 \frac{\left(v, \alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \alpha_{i} .
$$

The group generated by the s_{i} in $\mathrm{GL}\left(X^{*}(T)\right)$ is isomorphic to the Weyl group.
Remark: Observe, that rankZ $R=n=\operatorname{dim} T$, in contrast to the GL_{n} case: this is because $\mathrm{Sp}_{2 n}$ is (semi)simple.

Representation Theory The main Theorem is

Theorem:

1. Let W be a finite dimensional irreducible representation of $S p_{2 n}$. Then, there is a unique line $L \subset W$ that is B-invariant, and on which T acts by $\lambda \in X^{*}(T)$. Moreover, if $\mu \in \Lambda(W)$ is a weight then $\lambda \geq \mu$; we call λ the highest weight in W. The weight $\lambda=\sum_{i} a_{i} \chi_{i}$ satisfies $a_{1} \geq \ldots \geq a_{n} \geq 0$.
2. To any weight $\lambda=\sum_{i} a_{i} \chi_{i}, a_{1} \geq \ldots \geq a_{n} \geq 0$, there is an irreducible representation of $\mathrm{Sp}_{2 n}$ with λ as its highest weight.

We will focus on the example $S p_{4}$.

