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We will introduce the basic structure and representation theory of the symplectic group Sp(V ).

Basics Fix a nondegenerate, alternating bilinear form ω : V × V → C, where V is a finite
dimensional C-vector space. This means that

1. ω(u, v) = −ω(v , u)

2. ω(u,V ) = 0 = ω(V , u) =⇒ u = 0 ∈ V ,

3. ω(au + bv ,w) = aω(u,w) + bω(v ,w).

Let e1 6= 0. Then, by (2) there is some f1 /∈ span(e1) such that ω(f1, e1) 6= 0; scaling we may
assume that ω(f1, e1) = 1. Let U1 = span(e1, f1) ⊂ V . The subspace

U⊥1 = {v ∈ V | ω(u, v) = 0, for all u ∈ U1} ⊂ V

satisfies U1 ∩ U⊥1 = {0} (why?). Nondegeneracy ensures an isomorphism

V → V ∗ ; v 7→ ω(−, v),

so that we can identify the annihilator U∨1 ⊂ V ∗ with some dimV − 2 subspace V1 ⊂ V
via this isomorphism. Moreover, U1 ∩ V1 = {0}, and ω|V1

is nondegenerate: if ω(v ,V1) =
0 then ω(v ,V ) = 0 =⇒ v = 0. Hence, by induction we can assume that V1 ad-
mits a basis (e2, ... , en, fn, ... , f2) such that ω(fi , ej) = δij . Then, with respect to the basis
(e1, ... , en, fn, ... , f1), the matrix of ω is

J
def
= [ω] =



1

. . .

1
−1

. . .

−1


Remark: J−1 = −J = Jt

The symplectic group (with respect to ω) Sp(V ,ω) is the group of all operators on V
preserving ω

Sp(V ,ω) = {g ∈ GL(V ) | ω(gu, gv) = ω(u, v), for all u, v ∈ V }.

We have just seen above that any nondegenerate alternating form ω admits a basis such that
the matrix of ω is J: this means that all such pairs (V ,ω) (such a pair is defined as a symplectic
vector space; a corresponding basis is called a symplectic basis) are equivalent, in the sense
that, for any two such pairs (V ,ω), (V ′,ω′), there is an isomorphism

T : V → V ′, such that ω′(Tu,Tv) = ω(u, v).

In particular, we may as well choose V = C2n, and ω to be the nondegenerate, alternating
form

ω0 : C2n × C2n → C ; (u, v) 7→ utJv .
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Hence, we can restrict ourselves to the group

Sp(C2n,ω0) = {g ∈ GL2n | g tJg = J}.

We will denote this group Sp2n: it is a subvariety of GL2n defined by the equations g tJg = J.
Hence, Sp2n is an affine algebraic variety such that its group operations are given by morphisms
of algebraic varieties. Moreover, we see that

det(g tJg) = det J =⇒ det(g)2 = 1 =⇒ det(g) = ±1.

Exercise:

1. If g ∈ Sp2n then g t ∈ Sp2n.

2. Let g ∈ Sp2n, v ∈ V , such that gv = λv . Show that there exists w ∈ V such that
gw = λ−1w . Deduce that Sp2n ⊂ SL2n.

Tori, Weyl Group It can be checked that the intersection T = Sp2n∩T2n, with the standard
maximal torus in GL2n, is

T =





t1
. . .

tn
t−1n

. . .

t−11


| t1, ... , tn ∈ C×


∼= (C×)n

Hence, T is a complex torus. Moreover, T is maximal.

You can think of T as being those operators on C2n that preserve ω0 and for which the
symplectic basis is a common eigenbasis.

Let’s ‘guess’ what we expect the Weyl group W = NSp2n(T )/T to be:

- For GLn we saw that the normaliser NG (T ) consists of all those operators that preserved
the set of lines defined by the common eigenbasis for T ⊂ GLn. When we divided out by
the action of T we forgot about the scaling that we could have within each line, so that
NG (T )/T was the group acting on the set of n eigenlines.

- You might guess that we simply permute all elements of the symplectic basis but this is
not correct: if we swapped e1 and e2 then we would no longer preserve the form ω0 as
1 = ω0(f1, e1) 6= ω0(f1, e2) = 0. A moment’s thoughtand we see that permuting ei and
ej means that we must also permute fi and fj . Hence, there should be a copy of Sn sitting
inside W : it consists of those symmetries that preserve the pairs of lines (Cei ,Cfi ).

- We are allowed further symmetry: within each pair of lines (Cei ,Cfi ), we can swap the
lines. However, when we swap the lines we must map Cei to −Cfi , in order that the
symmetry preserve ω0.

- Hence, we should think of the Weyl group of Sp2n as being the symmetry we have in any
ordering of the ‘symplectic planes’ we choose. We expect there to be subgroups of W
isomorphic to Sn - corresponding to swapping the pairs of lines (Cei ,Cfi ) - and (Z/2Z)n

- swapping the lines within each pair (with the ‘minus twist’).
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Fact: the Weyl group of Sp2n is

W (Cn)
def
= W ∼= Sn n (Z/2Z)n,

where σ ∈ Sn ⊂W acts on (a1, ... , an) ∈ (Z/2Z)n by permuting entries.

For example, the representatives of the symmetric group appearing in W are of the form[
σ 0
0 σ

]
where σ is the permutation matrix obtained by reflecting σ in the antidiagonal. For example,
if σ = (12) ∈ S3 then we have 

1
1

1
1

1
1

 .

The element (a1, ... , an) ∈ (Z/2Z)n has representative a 2n × 2n matrix [cij ] with

cii = c2n+1−i ,2n+1−i = 1, whenever ai = 0 ∈ Z/2Z,

c2n+1−i ,i = 1 = −ci ,2n+1−i , whenever ai = 1 ∈ Z/2Z.

For example, in Weyl group W (C2) we have the following representatives for (12) ∈ S2,
(1, 0) ∈ (Z/2Z)2, (0, 1) ∈ (Z/2Z)2

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 0 −1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


Exercise: W (C2) ∼= D8. However, W (Cn) 6∼= D4n in general (why?).

Roots etc The character lattice of T is generated by the projections onto the i th diagonal
entry. Denote these projections χi , so that X ∗(T ) =

∑
Zχi .

We are going to determine the root system - for this we need to know the Lie algebra of Sp2n.
It is a fact that

sp2n
def
= {X ∈ M2n | X tJ + JX = 0} =

{[
A B
C D

]
| tC = C ,t B = B,−D =t A

}
where tM denotes the transpose across the antidiagonal.

For example, we have

sp4 =



a b e f
c d g e
h i −d −b
j h −c −a




sp6 =





a b c x11 x12 z
d e f x21 y x12
g h i x x21 x11
y11 y12 w −i −f −c
y21 v y12 −h −e −b
u y21 y11 −g −d −a




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Then, Sp2n acts linearly on sp2n by conjugation, and T admits a common eigenbasis: namely,
they are the same basis vectors as we see for the above examples. For example, for sp4 we
have eigenbasis

{E11 − E44,E22 − E33,E12 − E34,E21 − E43,E13 + E24,E14,E23,E32,E41,E31 + E42}

and the weights are
0,±χ1 − χ2,±χ1 + χ2,±2χ1,±2χ2

If we let α1 = χ1 − χ2, α2 = 2χ2, then we can write the nonzero elements above as

±α1, ±(α1 + α2), ±(2α1 + α2), ±α2;

these are the roots of sp4.

In the sp6 case we have weights

0, ±χi − χj , ±χk + χl , i < j , k ≤ l .

If we let
α1 = χ1 − χ2, α2 = χ2 − χ3, α3 = 2χ3,

then we can write the above nonzero weights

±αi , ±(α1 + α2), ±(α2 + α3), ±(2α2 + α3) ± (α1 + α2 + α3), ±(α1 + 2α2 + α3),

±(α1 + 2α2 + α3), ±(2α1 + 2α2 + α3);

these are the roots of sp6.

In general, the roots of Sp2n (with respect to our choice of T ) are

R
def
= {χi − χj | i 6= j} ∪ {χi + χj | i ≤ j} ⊂ X ∗(T )

and a set of simple roots are

α1 = χ1 − χ2, α2 = χ2 − χ3, ... , αn = 2χn.

This allows us to define the positive roots

R+
def
= {α ∈ R | α =

∑
niαi , ni ∈ Z≥0},

and the negative roots −R+.

For α ∈ R, a root subgroup is a subgroup

Uα = I2n + aEα, a ∈ C

where Eα is an eigenvector with T -eigenvalue α.

Proposition/Definition: The standard Borel B ⊂ Sp2n is the subgroup generated by T
and Uα, α ∈ R+. It is a Borel subgroup. It is the intersection Sp2n ∩ B2n of Sp2n with
the upper triangular matrices in GL2n.

We define the fundamental weights

ω1 = χ1, ω2 = χ1 + χ2, ... , ωn−1 = χ1 + ... + χn−1, ωn = χ1 + ... + χn.
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The corresponding Dynkin diagram is

• − − − • − −− • · · · • ⇐= •

This signifies that the angle between αi and αi+1 is 2π/3, for i = 1, ... , n−1; the angle between
αn−1 and αn is 3π/4; and all other angles between simple roots is π/2. All of these angles are
measured in the Euclidean space

∑
Rχi , with respect to the standard inner (= dot) product.

The set of roots R is a root system: the reflections defined by each simple root αi are

si : v 7→ v − 2
(v ,αi )

(αi ,αi )
αi .

The group generated by the si in GL(X ∗(T )) is isomorphic to the Weyl group.

Remark: Observe, that rankZR = n = dimT , in contrast to the GLn case: this is because
Sp2n is (semi)simple.

Representation Theory The main Theorem is

Theorem:

1. Let W be a finite dimensional irreducible representation of Sp2n. Then, there is a unique
line L ⊂ W that is B-invariant, and on which T acts by λ ∈ X ∗(T ). Moreover, if
µ ∈ Λ(W ) is a weight then λ ≥ µ; we call λ the highest weight in W . The weight
λ =

∑
i aiχi satisfies a1 ≥ ... ≥ an ≥ 0.

2. To any weight λ =
∑

i aiχi , a1 ≥ ... ≥ an ≥ 0, there is an irreducible representation of
Sp2n with λ as its highest weight.

We will focus on the example Sp4.
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