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We will introduce the basic structure and representation theory of the symplectic group Sp(V).

Basics Fix a nondegenerate, alternating bilinear form w : V x V. — C, where V is a finite
dimensional C-vector space. This means that

1. w(u,v) = —w(v,u)
2. wu,V)=0=w(V,u) = u=0ecV,
3. w(au+ bv,w) = aw(u, w) + bw(v, w).

Let e; # 0. Then, by (2) there is some f; ¢ span(er) such that w(fi, e1) # 0; scaling we may
assume that w(f1, e1) = 1. Let U; = span(ey, f1) C V. The subspace

U ={veV]|wv)=0, forallue U} cV
satisfies Us N Ui = {0} (why?). Nondegeneracy ensures an isomorphism
V-V v w(—v),

so that we can identify the annihilator Ulv C V* with some dimV — 2 subspace V; C V
via this isomorphism. Moreover, U; N Vi = {0}, and w)y, is nondegenerate: if w(v, V1) =
0 then w(v,V) = 0 = v = 0. Hence, by induction we can assume that V; ad-
mits a basis (e, ..., en, fn, ..., f) such that w(f;, e;) = ;. Then, with respect to the basis
(e1, ..., €n fn, ..., f1), the matrix of w is

Remark: J 1= —J=Jt

The symplectic group (with respect to w) Sp(V,w) is the group of all operators on V
preserving w

Sp(V,w) ={g € GL(V) | w(gu, gv) = w(u, v), forall u,v € V}.

We have just seen above that any nondegenerate alternating form w admits a basis such that
the matrix of w is J: this means that all such pairs (V, w) (such a pair is defined as a symplectic
vector space; a corresponding basis is called a symplectic basis) are equivalent, in the sense
that, for any two such pairs (V,w), (V/,w’), there is an isomorphism

T:V — V' suchthat ' (Tu, Tv) = w(u, v).

In particular, we may as well choose V = C2?", and w to be the nondegenerate, alternating
form
wo: C % C?" = C; (u,v) — uldv.



Hence, we can restrict ourselves to the group
Sp(C?", wo) = {g € GLo, | g'Jg = J}.

We will denote this group Sp,,: it is a subvariety of GLy, defined by the equations gtJg = J.
Hence, Sp,,, is an affine algebraic variety such that its group operations are given by morphisms
of algebraic varieties. Moreover, we see that

det(giJg) = detJ = det(g)?> =1 = det(g) = 1.

Exercise:
1. If g € Sp,, then gt € Sp,,,.
2. Let g € Spy,, v € V, such that gv = Av. Show that there exists w € V such that
gw = A~tw. Deduce that Sp,, C SLa,.

Tori, Weyl Group It can be checked that the intersection T = Sp,,N T2, with the standard
maximal torus in GLy,, is
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Hence, T is a complex torus. Moreover, T is maximal.

You can think of T as being those operators on C2" that preserve wg and for which the
symplectic basis is a common eigenbasis.

Let's ‘guess’ what we expect the Weyl group W = Nsp,, (T)/T to be:

- For GL,, we saw that the normaliser Ng(T) consists of all those operators that preserved
the set of lines defined by the common eigenbasis for T C GL,,. When we divided out by
the action of T we forgot about the scaling that we could have within each line, so that
Ng(T)/T was the group acting on the set of n eigenlines.

- You might guess that we simply permute all elements of the symplectic basis but this is
not correct: if we swapped e; and e, then we would no longer preserve the form wp as
1 =wo(f,e1) # wo(fi, e2) = 0. A moment's thoughtand we see that permuting e; and
e; means that we must also permute f; and f;. Hence, there should be a copy of S, sitting
inside W: it consists of those symmetries that preserve the pairs of lines (Ce;, Cf;).

- We are allowed further symmetry: within each pair of lines (Ce;, Cf;), we can swap the
lines. However, when we swap the lines we must map Ce; to —Cf;, in order that the
symmetry preserve wy.

- Hence, we should think of the Weyl group of Sp,,, as being the symmetry we have in any
ordering of the ‘symplectic planes’ we choose. We expect there to be subgroups of W
isomorphic to S, - corresponding to swapping the pairs of lines (Ce;, Cf;) - and (Z/27Z)"
- swapping the lines within each pair (with the ‘minus twist’).



Fact: the Weyl group of Sp,,, is

W(C) & w=s,x (z/22)"

where 0 € S, C W acts on (a1, ..., an) € (Z/2Z)" by permuting entries.

For example, the representatives of the symmetric group appearing in W are of the form
c 0
0 o

where g is the permutation matrix obtained by reflecting ¢ in the antidiagonal. For example,
if 0 = (12) € S3 then we have
1 -

1

i 1

The element (ay, ..., an) € (Z/2Z)" has representative a 2n x 2n matrix [c;] with

Cii = Cpt+1—i2n+1—i = 1, whenever a; =0 € Z/QZ,
Conti1—ii = 1= —Ci2n+1—i whenever a; =1 € Z/2Z.

For example, in Weyl group W(C(,) we have the following representatives for (12) € S,
(1,0) € (z/27.)?,(0,1) € (Z/2Z)?

0100 0 00 —1 10 0 O
1 000 010 O 00 -1 0
0 0O0T1f"f0O0C1T Of"|O1T 0 O
0 010 1 00 O 00 0 1

Exercise: W((,) = Dg. However, W(C,) % Dan in general (why?).

Roots etc The character lattice of T is generated by the projections onto the i diagonal
entry. Denote these projections x;j, so that X*(T) = >_ Zy;.

We are going to determine the root system - for this we need to know the Lie algebra of Sp,,,
It is a fact that

A B
¢ D

def

5p2n:{X€M2n|XtJ+JX:0}:{[ ] ny:C,tB:B,—D:tA}

where M denotes the transpose across the antidiagonal.

For example, we have

a b e f
_ c d g e
Wa=N1n i —d —b
j h —c -a
[a b ¢ x11 x12 Zz]]
d e fox1 ¥y X
_ g h i X  Xo1 X1
P = yii yi2 w —i —f —c
yor v yi» —h —e —b
L u ya yu —g& —d —aj




Then, Sp,, acts linearly on sp,, by conjugation, and T admits a common eigenbasis: namely,
they are the same basis vectors as we see for the above examples. For example, for sp, we
have eigenbasis

{E11 — Eaa, Exp — E3z3, E1p — E3a, Ep1 — Euz, Ex3 + Eos, Era, Eps, Ezp, Ea1, E31 + Esp}

and the weights are
0, £x1 — x2, £x1 + X2, £2x1, £2X2

If we let a1 = x1 — X2, a2 = 2x2, then we can write the nonzero elements above as
+aig, (a1 + a2), £(2a1 + a2), Lag;

these are the roots of sp,.

In the spg case we have weights
0, £xi —xj» Xk +x1. i <j, k<

If we let
a1 = X1 — X2, @2 = X2 — X3, @3 = 2X3,
then we can write the above nonzero weights

tai, £(a1 + a2), £(a2 + a3), £(Raz + a3) £ (a1 + a2 + a3), £(o1 + 202 + az),

+(a1 + 202 + a3), £(2a1 + 202 + a3);
these are the roots of spg.

In general, the roots of Sp,, (with respect to our choice of T) are

def o o .
RE {xi—xjli#jyu{xi+x;li<jlcX(T)

and a set of simple roots are
a1 =X1— X2, Q@2 =X2— X3, - , Qn=2Xn.
This allows us to define the positive roots
def
Ry = {aeR| a:Zn;a;, nj € Z>o},

and the negative roots — R, .

For oo € R, a root subgroup is a subgroup

Ua:/2n+aEa, acC

where E, is an eigenvector with T-eigenvalue a.

Proposition/Definition: The standard Borel B C Sp,,, is the subgroup generated by T
and U,, a € Ry. It is a Borel subgroup. It is the intersection Sp,, N By, of Sp,, with
the upper triangular matrices in GL;),.

We define the fundamental weights

W1 =X1, W2=X1+ X2 -y Wp-1=X1+ -+ Xn-1, Wp=Xx1+ .-+ Xn-



The corresponding Dynkin diagram is
° . 'Y - — — o . e o <= [ ]

This signifies that the angle between «; and a1 is 27/3, for i = 1, ..., n—1; the angle between
ap—1 and «a;, is 37/4; and all other angles between simple roots is 7/2. All of these angles are
measured in the Euclidean space > Ry;, with respect to the standard inner (= dot) product.

The set of roots R is a root system: the reflections defined by each simple root «; are

(v, o)

Sit Vi v—2
’ (i, o)

-

The group generated by the s; in GL(X*(T)) is isomorphic to the Weyl group.

Remark: Observe, that rankZR = n = dim T, in contrast to the GL, case: this is because
Sp,, is (semi)simple.

Representation Theory The main Theorem is

Theorem:
1. Let W be a finite dimensional irreducible representation of Sp,,. Then, there is a unique
line L C W that is B-invariant, and on which T acts by A € X*(T). Moreover, if

p € N(W) is a weight then A > p; we call A the highest weight in W. The weight
A =), ajx; satisfies a1 > ... > a, > 0.

2. To any weight A = )" ajxj, a1 > ... > ap > 0, there is an irreducible representation of
Sp,, with A as its highest weight.

We will focus on the example Sp,.



