UC Berkeley Summer Undergraduate Research Program 2015 July 9 Lecture

We will introduce the basic structure and representation theory of the symplectic group Sp(V).

Basics Fix a nondegenerate, alternating bilinear form $\omega : V \times V \to \mathbb{C}$, where V is a finite dimensional \mathbb{C} -vector space. This means that

- 1. $\omega(u, v) = -\omega(v, u)$
- 2. $\omega(u, V) = 0 = \omega(V, u) \implies u = 0 \in V$,
- 3. $\omega(au + bv, w) = a\omega(u, w) + b\omega(v, w)$.

Let $e_1 \neq 0$. Then, by (2) there is some $f_1 \notin \text{span}(e_1)$ such that $\omega(f_1, e_1) \neq 0$; scaling we may assume that $\omega(f_1, e_1) = 1$. Let $U_1 = \text{span}(e_1, f_1) \subset V$. The subspace

$$U_1^\perp=\{v\in V\mid \omega(u,v)=0, ext{ for all } u\in U_1\}\subset V$$

satisfies $U_1 \cap U_1^\perp = \{0\}$ (why?). Nondegeneracy ensures an isomorphism

$$V \rightarrow V^*$$
; $v \mapsto \omega(-, v)$,

so that we can identify the annihilator $U_1^{\vee} \subset V^*$ with some dim V - 2 subspace $V_1 \subset V$ via this isomorphism. Moreover, $U_1 \cap V_1 = \{0\}$, and $\omega_{|V_1}$ is nondegenerate: if $\omega(v, V_1) =$ 0 then $\omega(v, V) = 0 \implies v = 0$. Hence, by induction we can assume that V_1 admits a basis $(e_2, \ldots, e_n, f_n, \ldots, f_2)$ such that $\omega(f_i, e_j) = \delta_{ij}$. Then, with respect to the basis $(e_1, \ldots, e_n, f_n, \ldots, f_1)$, the matrix of ω is

$$J \stackrel{def}{=} [\omega] = \begin{bmatrix} & & & 1 \\ & & \ddots \\ & & 1 \\ & -1 & & \\ & \ddots & & \\ -1 & & & \end{bmatrix}$$

Remark: $J^{-1} = -J = J^t$

The symplectic group (with respect to ω) Sp(V, ω) is the group of all operators on V preserving ω

$$\mathsf{Sp}(V,\omega) = \{g \in \mathsf{GL}(V) \mid \omega(gu, gv) = \omega(u, v), \text{ for all } u, v \in V\}.$$

We have just seen above that any nondegenerate alternating form ω admits a basis such that the matrix of ω is J: this means that all such pairs (V, ω) (such a pair is defined as a **symplectic vector space**; a corresponding basis is called a **symplectic basis**) are **equivalent**, in the sense that, for any two such pairs (V, ω) , (V', ω') , there is an isomorphism

$$T: V \to V'$$
, such that $\omega'(Tu, Tv) = \omega(u, v)$.

In particular, we may as well choose $V = \mathbb{C}^{2n}$, and ω to be the nondegenerate, alternating form

$$\omega_0: \mathbb{C}^{2n} \times \mathbb{C}^{2n} \to \mathbb{C}; (u, v) \mapsto u^t J v.$$

Hence, we can restrict ourselves to the group

$$\operatorname{Sp}(\mathbb{C}^{2n}, \omega_0) = \{g \in \operatorname{GL}_{2n} \mid g^t Jg = J\}.$$

We will denote this group Sp_{2n} : it is a subvariety of GL_{2n} defined by the equations $g^t Jg = J$. Hence, Sp_{2n} is an affine algebraic variety such that its group operations are given by morphisms of algebraic varieties. Moreover, we see that

$$\det(g^t Jg) = \det J \implies \det(g)^2 = 1 \implies \det(g) = \pm 1$$

Exercise:

- 1. If $g \in \text{Sp}_{2n}$ then $g^t \in \text{Sp}_{2n}$.
- 2. Let $g \in \text{Sp}_{2n}$, $v \in V$, such that $gv = \lambda v$. Show that there exists $w \in V$ such that $gw = \lambda^{-1}w$. Deduce that $\text{Sp}_{2n} \subset \text{SL}_{2n}$.

Tori, Weyl Group It can be checked that the intersection $T = \text{Sp}_{2n} \cap T_{2n}$, with the standard maximal torus in GL_{2n} , is

$$T = \left\{ \begin{bmatrix} t_1 & & & & \\ & \ddots & & & \\ & & t_n & & \\ & & & t_n^{-1} & & \\ & & & & \ddots & \\ & & & & & t_1^{-1} \end{bmatrix} \mid t_1, \dots, t_n \in \mathbb{C}^{\times} \right\} \cong (\mathbb{C}^{\times})^n$$

Hence, T is a complex torus. Moreover, T is maximal.

You can think of T as being those operators on \mathbb{C}^{2n} that preserve ω_0 and for which the **symplectic basis** is a common eigenbasis.

Let's 'guess' what we expect the Weyl group $W = N_{\text{Sp}_{2n}}(T)/T$ to be:

- For GL_n we saw that the normaliser $N_G(T)$ consists of all those operators that preserved the set of lines defined by the common eigenbasis for $T \subset GL_n$. When we divided out by the action of T we forgot about the scaling that we could have within each line, so that $N_G(T)/T$ was the group acting on the set of n eigenlines.
- You might guess that we simply permute all elements of the symplectic basis but this is not correct: if we swapped e₁ and e₂ then we would no longer preserve the form ω₀ as 1 = ω₀(f₁, e₁) ≠ ω₀(f₁, e₂) = 0. A moment's thoughtand we see that permuting e_i and e_j means that we must also permute f_i and f_j. Hence, there should be a copy of S_n sitting inside W: it consists of those symmetries that preserve the pairs of lines (Ce_i, Cf_i).
- We are allowed further symmetry: within each pair of lines $(\mathbb{C}e_i, \mathbb{C}f_i)$, we can swap the lines. However, when we swap the lines we must map $\mathbb{C}e_i$ to $-\mathbb{C}f_i$, in order that the symmetry preserve ω_0 .
- Hence, we should think of the Weyl group of Sp_{2n} as being the symmetry we have in any ordering of the 'symplectic planes' we choose. We expect there to be subgroups of W isomorphic to S_n corresponding to swapping the pairs of lines (ℂe_i, ℂf_i) and (ℤ/2ℤ)ⁿ
 swapping the lines within each pair (with the 'minus twist').

Fact: the Weyl group of Sp_{2n} is

$$W(C_n) \stackrel{def}{=} W \cong S_n \ltimes (\mathbb{Z}/2\mathbb{Z})^n$$
,

where $\sigma\in\mathcal{S}_n\subset W$ acts on $(a_1,\ldots,a_n)\in(\mathbb{Z}/2\mathbb{Z})^n$ by permuting entries.

For example, the representatives of the symmetric group appearing in \boldsymbol{W} are of the form

$$\begin{bmatrix} \sigma & 0 \\ 0 & \underline{\sigma} \end{bmatrix}$$

where $\underline{\sigma}$ is the permutation matrix obtained by **reflecting** σ **in the antidiagonal**. For example, if $\sigma = (12) \in S_3$ then we have

The element $(a_1, ..., a_n) \in (\mathbb{Z}/2\mathbb{Z})^n$ has representative a $2n \times 2n$ matrix $[c_{ij}]$ with

$$c_{ii} = c_{2n+1-i,2n+1-i} = 1$$
, whenever $a_i = 0 \in \mathbb{Z}/2\mathbb{Z}$,

$$c_{2n+1-i,i} = 1 = -c_{i,2n+1-i}$$
, whenever $a_i = 1 \in \mathbb{Z}/2\mathbb{Z}$.

For example, in Weyl group $W(C_2)$ we have the following representatives for (12) $\in S_2$, $(1,0) \in (\mathbb{Z}/2\mathbb{Z})^2$, $(0,1) \in (\mathbb{Z}/2\mathbb{Z})^2$

Γ0	1	0	0		Γ0	0	0	-1		Γ1	0	0	0]
1	0	0	0		0	1	0	0		0	0	-1	0
0	0	0	1	,	0	0	1	0	,	0	1	0	0
0	0	1	0		1	0	0	0		0	0	0	1

Exercise: $W(C_2) \cong D_8$. However, $W(C_n) \not\cong D_{4n}$ in general (why?).

Roots etc The character lattice of T is generated by the projections onto the i^{th} diagonal entry. Denote these projections χ_i , so that $X^*(T) = \sum \mathbb{Z}\chi_i$.

We are going to determine the root system - for this we need to know the Lie algebra of Sp_{2n} . It is a fact that

$$\mathfrak{sp}_{2n} \stackrel{def}{=} \{X \in M_{2n} \mid X^t J + JX = 0\} = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \mid {}^t C = C, {}^t B = B, -D = {}^t A \right\}$$

where ${}^{t}M$ denotes the transpose across the antidiagonal.

For example, we have

$$\mathfrak{sp}_{4} = \left\{ \begin{bmatrix} a & b & e & f \\ c & d & g & e \\ h & i & -d & -b \\ j & h & -c & -a \end{bmatrix} \right\}$$
$$\mathfrak{sp}_{6} = \left\{ \begin{bmatrix} a & b & c & x_{11} & x_{12} & z \\ d & e & f & x_{21} & y & x_{12} \\ g & h & i & x & x_{21} & x_{11} \\ y_{11} & y_{12} & w & -i & -f & -c \\ y_{21} & v & y_{12} & -h & -e & -b \\ u & y_{21} & y_{11} & -g & -d & -a \end{bmatrix} \right\}$$

Then, Sp_{2n} acts linearly on \mathfrak{sp}_{2n} by conjugation, and T admits a common eigenbasis: namely, they are the same basis vectors as we see for the above examples. For example, for \mathfrak{sp}_4 we have eigenbasis

$$\{E_{11} - E_{44}, E_{22} - E_{33}, E_{12} - E_{34}, E_{21} - E_{43}, E_{13} + E_{24}, E_{14}, E_{23}, E_{32}, E_{41}, E_{31} + E_{42}\}$$

and the weights are

0,
$$\pm\chi_1-\chi_2$$
, $\pm\chi_1+\chi_2$, $\pm2\chi_1$, $\pm2\chi_2$

If we let $\alpha_1 = \chi_1 - \chi_2$, $\alpha_2 = 2\chi_2$, then we can write the nonzero elements above as

$$\pm \alpha_1$$
, $\pm (\alpha_1 + \alpha_2)$, $\pm (2\alpha_1 + \alpha_2)$, $\pm \alpha_2$;

these are the **roots of** \mathfrak{sp}_4 .

In the \mathfrak{sp}_6 case we have weights

$$0, \ \pm \chi_i - \chi_j, \ \pm \chi_k + \chi_l, \quad i < j, \ k \le l.$$

If we let

$$\alpha_1 = \chi_1 - \chi_2, \ \alpha_2 = \chi_2 - \chi_3, \ \alpha_3 = 2\chi_3,$$

then we can write the above nonzero weights

$$\pm \alpha_i, \ \pm (\alpha_1 + \alpha_2), \ \pm (\alpha_2 + \alpha_3), \ \pm (2\alpha_2 + \alpha_3) \ \pm (\alpha_1 + \alpha_2 + \alpha_3), \ \pm (\alpha_1 + 2\alpha_2 + \alpha_3),$$
$$\pm (\alpha_1 + 2\alpha_2 + \alpha_3), \ \pm (2\alpha_1 + 2\alpha_2 + \alpha_3);$$

these are the **roots of** \mathfrak{sp}_6 .

In general, the roots of Sp_{2n} (with respect to our choice of T) are

$$R \stackrel{\text{def}}{=} \{\chi_i - \chi_j \mid i \neq j\} \cup \{\chi_i + \chi_j \mid i \leq j\} \subset X^*(T)$$

and a set of simple roots are

$$\alpha_1 = \chi_1 - \chi_2$$
, $\alpha_2 = \chi_2 - \chi_3$, ..., $\alpha_n = 2\chi_n$.

This allows us to define the positive roots

$$R_{+} \stackrel{\text{def}}{=} \{ \alpha \in \mathbb{R} \mid \alpha = \sum n_{i} \alpha_{i}, \ n_{i} \in \mathbb{Z}_{\geq 0} \},\$$

and the **negative roots** $-R_+$.

For $\alpha \in R$, a **root subgroup** is a subgroup

$$U_{\alpha} = I_{2n} + aE_{\alpha}, \quad a \in \mathbb{C}$$

where E_{α} is an eigenvector with *T*-eigenvalue α .

Proposition/Definition: The standard Borel $B \subset \text{Sp}_{2n}$ is the subgroup generated by T and U_{α} , $\alpha \in R_+$. It is a Borel subgroup. It is the intersection $\text{Sp}_{2n} \cap B_{2n}$ of Sp_{2n} with the upper triangular matrices in GL_{2n} .

We define the fundamental weights

$$\omega_1 = \chi_1, \ \omega_2 = \chi_1 + \chi_2, \ \dots, \ \omega_{n-1} = \chi_1 + \dots + \chi_{n-1}, \ \omega_n = \chi_1 + \dots + \chi_n.$$

The corresponding **Dynkin diagram** is

 $\bullet \quad --- \quad \bullet \quad --- \quad \bullet \quad \cdots \quad \bullet \quad \Leftarrow \quad \bullet$

This signifies that the angle between α_i and α_{i+1} is $2\pi/3$, for i = 1, ..., n-1; the angle between α_{n-1} and α_n is $3\pi/4$; and all other angles between simple roots is $\pi/2$. All of these angles are measured in the Euclidean space $\sum \mathbb{R}\chi_i$, with respect to the standard inner (= dot) product.

The set of roots R is a root system: the reflections defined by each simple root α_i are

$$s_i: v \mapsto v - 2 \frac{(v, \alpha_i)}{(\alpha_i, \alpha_i)} \alpha_i.$$

The group generated by the s_i in $GL(X^*(T))$ is isomorphic to the Weyl group.

Remark: Observe, that rank $\mathbb{Z}R = n = \dim T$, in contrast to the GL_n case: this is because Sp_{2n} is (semi)simple.

Representation Theory The main Theorem is

Theorem:

- 1. Let W be a finite dimensional irreducible representation of Sp_{2n} . Then, there is a unique line $L \subset W$ that is *B*-invariant, and on which T acts by $\lambda \in X^*(T)$. Moreover, if $\mu \in \Lambda(W)$ is a weight then $\lambda \ge \mu$; we call λ the highest weight in W. The weight $\lambda = \sum_i a_i \chi_i$ satisfies $a_1 \ge ... \ge a_n \ge 0$.
- 2. To any weight $\lambda = \sum_{i} a_i \chi_i$, $a_1 \ge ... \ge a_n \ge 0$, there is an irreducible representation of Sp_{2n} with λ as its highest weight.

We will focus on the example Sp₄.