
UC Berkeley Summer Undergraduate Research Program 2015
July 8 Lecture

This lecture is intended to tie up some (potential) loose ends that we have encountered on the
road during the past couple of weeks. We will focus on root subgroups and some connections
with Lie algebras.

Root Subgroups Fix G = GLn and let T ⊂ B ⊂ G be the diagonal matrices sitting inside
the upper triangular matrices.

Let R = {χi − χj | i 6= j} be the set of roots, R+ = {χi − χj | i < j} the positive roots
(relative to B). For α ∈ R, we define the unipotent subgroup

Uα = {In + aEij | a ∈ C}.

This is a subgroup of G isomorphic to C - there exists a group isomorphism C → Uα that is
also a morphism of algebraic varieties. Let’s write

uα(a) = In + aEij ∈ Uα.

Exercise: uα(a) = exp(aEij).

T normalises Uα and

t(In + aEij)t−1 = In + α(t)aEij =⇒ tu(a)t−1 = u(α(t)a).

Hence, identifying Uα with C, we find that conjugation by T induces an action of T on C via
the root α: t · a = α(t)a.

Now, suppose that W is a representation of G and w ∈W (µ) is a (nonzero) weight vector of
weight µ: this means that tw = µ(t)w , for t ∈ T . Fix α ∈ R, some root of G .

Important Proposition: uα(a)w =
∑

i aiwi , where w0 = w , wi ∈W (µ+ iα), and the sum is
finite.

Proof: Restrict the representation of G on W to Uα ∼= C: this amounts to giving a morphism
of varieties that is also a group homomorphism

F : C ∼= Uα → G → GL(W ).

Such a morphism of affine varieties is determined by the induced morphism on coordinate rings

F ∗ : AGL(W ) → AC = C[t].

Fix a weight basis B = (w , u2, ... , um) of W (relative to T ), such that w is a basis vector.
Then, we get GL(W ) ∼= GLm, and AGL(W )

∼= C[xij , det−1], so that any C-algebra morphism is
determined by F ∗(xij) = fij(t) ∈ C[t]: we have [uα(a)]B = [fij(a)] with respect to this basis.
Hence, we have

uα(a)w =
∑
i

fi1(a)ui =
∑
k

akvk , vk ∈W .

Note that the vk ’s above are not weight vector a priori. We will show that, in fact, they are!
Let t ∈ T . Then,

t(uα(a)w) =
∑
k

aktvk .
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Also, we have

t(uα(a)w) =
(
tuα(a)t−1

)
(tw),

= uα(α(t)a)µ(t)w ,

= µ(t)
∑
i

fi1(α(t)a)ui ,

= µ(t)
∑
k

α(t)kakvk .

Hence, for every a ∈ C, t ∈ T ,

µ(t)
∑
k

α(t)kakvk =
∑
k

aktvk =⇒
∑
k

ak(µ(t)α(t)kvk − tvk) = 0 ∈W

Remark: a nicer proof of the following discussion was provided by Mark during lecture; I’ll
keep what I had for prosperity... Suppose that

∑
k akwk is a polynomial with coefficients in W

(ie wk ∈W ). Fix any basis of W , (x1, ... , xm). Then, we have, for every a ∈ C,

0 =
∑
k

akwk =
m∑
j=1

fj(a)uj =⇒ fj(a) = 0 =⇒ fj = 0 ∈ C[t]

Note that the coefficients of fj =
∑nj

i=0 cijT
i are such that wk =

∑m
j=1 ckjuj , so that we must

have wk = 0 ∈W , for all k.
In fact, we have then that

µ(t)α(t)kvk = tvk , for all t ∈ T , and each k such that vk 6= 0.

Otherwise, let
J = {k | µ(t)α(t)kvk 6= tvk , for some t ∈ T} 6= ∅.

Then, for k ∈ J we observe that
vk =

∑
j

cjuj ,

where cj is the coefficient of tk in fj1(t), and

tvk =
∑
j

cj tuj =
∑
j

cjµj(t)uj (uj ∈W (µj))

Moreover,
µ(t)α(t)kvk =

∑
j

cjµ(t)α(t)kuj ,

so that we must have µ(t0)α(t0)k 6= µj0(t0), for some t0 ∈ T , some j0 such that cj0 6= 0, and
any k ∈ J.

Hence, for every a ∈ C,

W 3 0 =
∑
k∈J

ak
∑
j

cj(µ(t0)α(t0)k − µj(t0))uj

=⇒ 0 =
∑
k∈J

akcj(µ(t0)α(t0)k − µj(t0)), for every j , a ∈ C.
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In particular, for every a ∈ C,

0 = cj0
∑
k∈J

ak(µ(t0)α(t0)k − µj0(t0)) =⇒ cj0 = 0, which is absurd.

The result follows! (Can you think of a ‘nicer’ proof? I feel like that there is a more elegant
way to prove this, without the juggling of quantifiers.)

Why do we care? We have just shown that the root subgroups move weight vectors in the
direction of α. Namely, if w ∈W (µ) then

uα(a)w ∈
∑
i≥0

W (µ+ iα).

Recall that we have defined a partial order on weights: for λ,µ ∈ X ∗(T ) we define

λ ≥ µ ⇔ λ− µ =
∑
i

niαi , ni ∈ Z≥0.

In particular, if α ∈ R+ so that α =
∑

j mjαj , with mj ∈ Z≥0, then for 0 6= w ∈W (µ),

Uαw ∈ w +
∑
λ>µ

W (λ).

Similarly, if α ∈ −R+, and 0 6= w ∈W (µ), then

Uαw ∈ w +
∑
λ<µ

W (λ).

Draw some A2 examples: fundamental represenations, Ad, decompose some symmetric
products

The above results tell us more. If we choose a weight basis B = (w1, ... , wm), wi ∈W (µi ),
for a representation W and order the basis elements so that they (linearly) refine the above
partial ordering - this means µi ≥ µj =⇒ i < j - then the matrix of an element u ∈ Uα,
for any α ∈ R+, is upper triangular, unipotent: we must always have

[uα(a)]B =

[
1 a∗

0 1

]
,

with powers of a appearing above the diagonal. Similarly, the matrix of an element u ∈ Uα,
for any α ∈ −R+, is lower triangular, unipotent.

For example, fix the basis (e12, e13, e14, e23, e24, e34) of
∧2C4. We have the set of weights of

this representation

Λ(
2∧
C4) = {χi + χj | i < j}.

Note that
µ12 = χ1 + χ2 = ω2,

µ13 = χ1 + χ3 = ω2 − α2,

µ14 = χ1 + χ4 = ω2 − α2 − α3,

µ23 = χ2 + χ3 = ω2 − α1 − α2,
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µ24 = χ2 + χ4 = ω2 − α1 − α2 − α3,

µ34 = χ3 + χ4 = ω2 − α1 − 2α2 − α3.

The poset (Λ(
∧2C4),≤) is

µ12
↑
µ13

↗ ↖
µ14 µ23

↖ ↗
µ24
↑
µ34

We see that, for example,

[uα3(a)] =



1
1 a

1
1 a

1
1



[uα1+α2(a)] =



1 −a
1

1
1

1
1


The Weyl Group Suppose that w ∈ W (µ) is a weight vector of weight µ (with respect to
T ). Recall that the Weyl group of G (relative to T ) is defined to be W = NG (T )/T ∼= Sn.
For σ ∈W , let xσ ∈ NG (T ) be a representative. Then,

1. W acts on X ∗(T ) as follows: for σ ∈W , α ∈ X ∗(T ),

σ · α : t 7→ α(x−1σ txσ).

2. if α ∈ R and sα ∈W is the reflection in the hyperplane orthogonal to α, then

t(xsαw) = xsα(x−1sα txsα)w = xsαµ(x−1sα txsα)w = (σ · µ)(t)xsαw .

=⇒ xsαw ∈W (σ · µ).

Hence, W permutes the weight spaces; in particular, for any σ ∈ W , dim W (µ) =
dim W (σ · µ).

The Lie algebra The Lie algebra of G is defined as g
def
= TeG , the tangent space at the

identity. For us, g = Mn. We can think of tangent vectors as derivatives of curves passing
through e ∈ G at t = 0. For example,

γα : [0, 1]→ Uα ; t 7→ uα(t),

and we have, assuming α = χi − χj , γ
′(0) = Eij .
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Given a rational representation ρ : G → GL(W ), we get an induced map of tangent spaces:

dρ : TeG → TidGL(W ) ; γ′(0) 7→ (ρ ◦ γ)′(0)

For example, if we choose a weight basis B for W =
∧2C4 refining ≤, as above, then we can

identify GL(W ) with GL6, and for any u ∈ Uα we have seen that the i th column of [uα(a)]B is
of the form 

c1ai−1

c2ai−2

...
ci−1a

1
0
...
0


, ci ∈ {0, 1}

Hence, if we restrict ρ to Uα then we find that (ρ◦γα)′(0) is a matrix with 0s everywhere away
from the main superdiagonal, where there may appear 1s.

For example, in the above examples, we see that

dρ(γ′α3
(0)) =



0
0 1

0
0 1

0
0



dρ(γ′α1+α2
(0)) =



0 −1
0

0
0

0
0

 .

Observing that
γ′α3

(0) = E34 ∈ M4, γ′α1+α2
(0) = E13 ∈ M4,

we can think of the above matrices as showing us how the root operators E34, E13 act on the
induced Lie algebra representation (whatever this means). For example, E34 does nothing
to any weight space W (µij), except for W (µ14) and W (µ24), and

E34 ·W (µ14) ⊂W (µ13), E34 ·W (µ24) ⊂W (µ23).

Observe that we have µ13 = µ14 + α3,µ23 = µ24 + α3; this is no accident.

Fact: If α ∈ R, then Eα ·W (µ) ⊂W (µ+ α).
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