
UC Berkeley Summer Undergraduate Research Program 2015
July 7 Lecture

Today we will see how to use representation theory to produce embeddings of the flag variety
(and partial flag varieties) inside some projective space PM .

Fix G = GLn and let T ⊂ B ⊂ G be the diagonal matrices sitting inside the upper triangular
matrices.

Recall that the irreducible (finite dimensional) representations of G are indexed by partitions
λ ∶ λ1 ≥ ... ≥ λn ≥ 0. In general, it’s not so easy to determine Vλ! However, we have seen that
the representations ⋀k Cn are irreducible with highest weight

ωi
def= χ1 + ... + χk ∶

we will now write Vωk
= ⋀k Cn. These weights are called the fundamental weights. Observe

that if we define the 1-parameter subgroup

α∨i ∶ t ↦ diag(1, ... , t, t−1, 1, ... , 1), i = 1, ... ,n − 1,

then ωk ○ α∨i (t) = δik .

Fix 1 ≤ k ≤ n. We know that the line Ce1 ∧ ⋯ ∧ ek ⊂ Vωk
is B-invariant: this is the same as

saying that the point [e1 ∧ ⋯ ∧ ek] ∈ P(Vωk
) ≅ P(

n
k
)−1 is fixed by the action of B on P(Vωk

)
(why is this well-defined action?). However, via the induced action of G on P(Vωk

), it can be
seen that

StabG([e1 ∧⋯ ∧ ek]) = {[∗k ∗
0 ∗n−k]} ,

a parabolic subgroup of G . Denote this parabolic subgroup Pk . It is a fact that Pk is a
maximal parabolic subgroup.

Hence, we get an identification

G/Pk ≅ G ⋅ [e1 ∧⋯ ∧ ek] ⊂ P(Vωk
).

Recall the weight basis {ei1 ∧ ⋯ ∧ eik ∣ 1 ≤ i1 < ... < ik ≤ n} of Vωk
. For a subset J ⊂ {1, ... ,n}

of cardinality k , denote the element of the dual basis xJ ∈ V ∗
ωk

. Hence, we can consider

P(Vωk
) ←→ P(

n
k
)−1 ; [v] ←→ [xJ(v)].

For example, when n = 4 we have Vω2 = ⋀2C4 and we get an isomorphism

P(Vω2) ←→ P5 ; [v] ←→ [x12(v) ∶ x13(v) ∶ x14(v) ∶ x23(v) ∶ x24(v) ∶ x34(v)]

In particular, we identify
[e1 ∧ e2] ↔ [1 ∶ 0 ∶ 0 ∶ 0 ∶ 0 ∶ 0],

[e1 ∧ e3] ↔ [0 ∶ 1 ∶ 0 ∶ 0 ∶ 0 ∶ 0] etc .

We have already seen how to identify G/Pk with Gr(k ,n) (although in a slightly different way):
we can think of a k-dimensional subspace U ⊂ Cn as the column-span of the first k columns
of an invertible matrix A = [a1 ⋯ an], so U = col(a1, ... , ak).

Given a matrix A we will write colk(A) for the column span of the first k columns.
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If we define an action of G on Gr(k ,n) by

g ⋅U def= colk(gA), where U = colk(A),

the stabiliser of U = span(e1, ... , ek) is Pk . Note that this action is well-defined. Hence,
as the action of G is transitive we obtain Gr(k ,n) ≡ G/Pk . We can realise this equivalence of
G -sets through the map

G → Gr(k,n) ; g ↦ g ⋅ span(e1, ... , ek).

Namely, we can factor
G → Gr(k ,n)
↓ d

G/Pk

The inverse of the dashed arrow is the map

Gr(k ,n) → G/Pk ; U = colk(A) ↦ APk ,

This is well-defined.

Remark: we have had to be careful here so that we get an identification of the left cosets
gPk with k-dimensional subspaces of Cn.

Given a subset J = {i1, ... , ik} ⊂ {1, ... ,n} of cardinality k, and an n × n matrix A, we can form
the k × k minor ∆J(A) with columns 1, ... , k and rows i1, ... , ik . As we saw in the first week
for n = 3, k = 2, we can coordinatise Gr(k ,n) using these Plucker coordinates

Gr(k,n) → P(
n
k
)−1 ; U = colk(A) ↦ [∆J(A)].

In particular, the Plucker embedding above is injective. (We can even give a description of
the image of this map as a projective variety)

Let’s see how these coordinates arrive in the representation-theoretic framework: denote the
natural pairing between a vector space W and its dual W ∗ by

⟨, ⟩ ∶W ∗ ×W → C ; (α, v) ↦ ⟨α, v⟩.
Consider the following functions on G :

ξJ ∶ g ↦ ⟨xJ ,g(e1 ∧⋯ ∧ ek)⟩.
If we consider the represenation of G defined by Vωk

, then ξJ(g) is the (J, 1) entry of the
matrix of the action of g on Vωk

, with respect to the weight basis.

Since Vωk
is a rational representation, the ξJ ∈ AG are regular functions on G , and are Pk -

invariant in the sense that ξJ(gp) = ξJ(g), for any p ∈ Pk . Thus, they descend to the quotient
G/Pk , so that we obtain functions ξJ ∶ G/Pk → C.

If the columns of g are g1, ... ,gn then we have

ξJ(g) = ⟨xJ ,g1 ∧⋯ ∧ gk⟩ = ∆J(g).

One way to check this without performing a calculation is to use the following characterisation
of the determinant: there exists a unique function f ∶ Ck ×⋯Ck → C (k copies of Ck , though
of as row vectors) such that
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1. f is alternating, f (u1, ... ,ui , ... ,uj , ... ,uk) = −f (u1, ... ,uj , ... ,ui , ... ,uk),

2. f is multilinear, ie, it is linear in each of its arguments,

3. f (e1, ... , ek) = 1.

In summary: the Plucker embedding of the Grassmannian has an intrinsic characterisa-
tion (without reference to minors). The Grassmannian is the image in P(Vωk

) of the
morphism

G/Pk → P(Vωk
) ; gPk ↦ [gu],

where u ∈ Vωk
is any highest weight vector (so that tu = ωk(t)u).

We observe that the homogenous coordinate ring of G/Pk under this embedding is isomorphic
to the Plucker algebra C[∆J].
Now, let λ = ∑i λiχi be a weight such that λ1 ≥ ... ≥ λn ≥ 0 and u ∈ Vλ a highest weight vector
(so that tu = λ(t)u, for t ∈ T ). If we set ai = λi − λi+1 ≥ 0, an = λn, then we can write

λ = a1ω1 + a2ω2 + ... + anωn.

The action of G on Vλ is linear so that it descends to an action on P(Vλ)

g ⋅ [v] def= [gv].

Recall that [v] is B-invariant, so that B ⊂ StabG([v]] and Pλ
def= StabG([v]) is a parabolic

subgroup of G . Hence, G/Pλ is a projective variety and we have determined an embedding

G/Pλ → P(Vλ) ; gPλ ↦ [gv].

Fact: if λ = a1ω1 + ... + anωn and I = {i ∣ ai ≠ 0} = {d1 < ... < dk} then StabG([v]) is a
parabolic subgroup consisting of block upper triangular matrices of size d1,d2−d1, ... ,dk−
dk−1. Moreover, G/Pλ is isomorphic to the multistep Grassmannian Gr(d1,d2, ... ,dk).
In particular, whenever I = {1, ... ,n} we obtain an embedding of the full flag variety
G/B in some projective space.
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