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Today we will see how to use representation theory to produce embeddings of the flag variety
(and partial flag varieties) inside some projective space PM.

Fix G = GL, and let T c B c G be the diagonal matrices sitting inside the upper triangular

matrices.

Recall that the irreducible (finite dimensional) representations of G are indexed by partitions
A A1 2>...2 A, 20. In general, it's not so easy to determine V! However, we have seen that
the representations AX C" are irreducible with highest weight

def .
Wi = X1+...+Xk:

we will now write V,, = AKC". These weights are called the fundamental weights. Observe
that if we define the 1-parameter subgroup

of tediag(l, ..., t,t741,..,1), i=1,..,n-1,

then wy oo/ (t) = djk.
Fix 1 < k < n. We know that the line Cey A--- A g c V,,, is B-invariant: this is the same as

saying that the point [e; A -~ A egk] € P(V,,) = P()1 is fixed by the action of B on P(V.,)
(why is this well-defined action?). However, via the induced action of G on P(V,, ), it can be

seen that
Stabg([e1 A+ Aex]) = {[*Ok . i k]}

a parabolic subgroup of G. Denote this parabolic subgroup Pj. It is a fact that Py is a
maximal parabolic subgroup.

Hence, we get an identification
G/PczG-[e1 A nex] cP(Vy,).

Recall the weight basis {ej A--Aej, | 1< <... <ix <n}of V. Forasubset Jc{1,.., n}
of cardinality k, denote the element of the dual basis x; € Vojk. Hence, we can consider

(V) PO [v] — [ (v)].
For example, when n =4 we have V,,, = A% C* and we get an isomorphism
P(Vi,) <= P°; [v] = [xaa(v) : xa3(v) s xaa(v) : x23(v)  xoa(v) : x34(v)]

In particular, we identify
[e1Ae] < [1:0:0:0:0:0],
[e1ne3] < [0:1:0:0:0:0] etc.
We have already seen how to identify G/Py with Gr(k, n) (although in a slightly different way):

we can think of a k-dimensional subspace U c C” as the column-span of the first k columns
of an invertible matrix A =[a; -+ a,], so U =col(ay, ..., ax).

Given a matrix A we will write coli(A) for the column span of the first k columns.



If we define an action of G on Gr(k, n) by

g-U def coli(gA), where U = col(A),

the stabiliser of U = span(ey, ..., ex) is Px. Note that this action is well-defined. Hence,
as the action of G is transitive we obtain Gr(k, n) = G/P,. We can realise this equivalence of
G-sets through the map

G - Gr(k,n); g+~ g-span(ey, ..., €).

Namely, we can factor
G - Gr(kn)
i) 7
G/ Py

The inverse of the dashed arrow is the map
Gr(k,n) - G/Py ; U =colc(A) » AP,

This is well-defined.

Remark: we have had to be careful here so that we get an identification of the left cosets
gP, with k-dimensional subspaces of C".

Given a subset J = {i1, ..., ik} ¢ {1,..., n} of cardinality k, and an nx n matrix A, we can form
the k x k minor A (A) with columns 1, ..., k and rows i1, ..., ix. As we saw in the first week
for n=3, k =2, we can coordinatise Gr(k, n) using these Plucker coordinates

Gr(k, n) > PW1: U= colc(A) = [A(A)].
In particular, the Plucker embedding above is injective. (We can even give a description of

the image of this map as a projective variety)

Let's see how these coordinates arrive in the representation-theoretic framework: denote the
natural pairing between a vector space W and its dual W* by

()W xW->C; (a,v) = (a, V).
Consider the following functions on G:

§1:8 > (xs,g(erneneg)).

If we consider the represenation of G defined by V,,, then £,(g) is the (J,1) entry of the
matrix of the action of g on V,,, , with respect to the weight basis.

Since V,,, is a rational representation, the {; € Ag are regular functions on G, and are Py-
invariant in the sense that £;(gp) = £,(g), for any p € Px. Thus, they descend to the quotient
G/Px, so that we obtain functions &, : G/Px — C.

If the columns of g are g1, ..., g, then we have

£(8) = (xs, 81~ Agk)=Dy(g).

One way to check this without performing a calculation is to use the following characterisation
of the determinant: there exists a unique function f : CK x -..Ck - C (k copies of Ck, though
of as row vectors) such that



1. fis alternating, f(uy, ..., U, ..., Uj, ..., ug) = =f(ug, ..., uj, ..., U, ..., Ug),
2. f is multilinear, ie, it is linear in each of its arguments,
3. f(el, ceey ek) =1.

In summary: the Plucker embedding of the Grassmannian has an intrinsic characterisa-
tion (without reference to minors). The Grassmannian is the image in P(V,, ) of the
morphism

G/Px—P(Ve,) ; gPx ~ [gu],

where v €V, is any highest weight vector (so that tu = w,(t)u).

We observe that the homogenous coordinate ring of G/Py under this embedding is isomorphic
to the Plucker algebra C[A,].

Now, let A = 3>; A\;x; be a weight such that A\; >... > A\, >0 and v € V), a highest weight vector
(so that tu = A(t)u, for t € T). If we set a; = A\; — A\jy1 20, a, = A, then we can write

A= aiwi + awo + ... + apWp.

The action of G on V) is linear so that it descends to an action on P(V))

g [v] % [gv].

Recall that [v] is B-invariant, so that B c Stabg([v]] and P, e Stabg([v]) is a parabolic
subgroup of G. Hence, G/P) is a projective variety and we have determined an embedding

G/P\x—P(Vy); gPx+ [gv].

Fact: if A\ = ajw1 + ...+ apw, and | = {i | a; # 0} = {d1 < ... < dx} then Stabg([v]) is a
parabolic subgroup consisting of block upper triangular matrices of size di, d>—di, ..., dx—
dk-1. Moreover, G/P, is isomorphic to the multistep Grassmannian Gr(dy, do, ..., di).
In particular, whenever |/ = {1,...,n} we obtain an embedding of the full flag variety
G/B in some projective space.



