UC Berkeley Summer Undergraduate Research Program 2015 July 7 Lecture

Today we will see how to use representation theory to produce embeddings of the flag variety (and partial flag varieties) inside <u>some</u> projective space \mathbb{P}^{M} .

Fix $G = GL_n$ and let $T \subset B \subset G$ be the diagonal matrices sitting inside the upper triangular matrices.

Recall that the irreducible (finite dimensional) representations of G are indexed by partitions $\lambda : \lambda_1 \ge ... \ge \lambda_n \ge 0$. In general, it's not so easy to determine V_{λ} ! However, we have seen that the representations $\bigwedge^k \mathbb{C}^n$ are irreducible with highest weight

$$\omega_i \stackrel{def}{=} \chi_1 + \ldots + \chi_k :$$

we will now write $V_{\omega_k} = \bigwedge^k \mathbb{C}^n$. These weights are called the **fundamental weights**. Observe that if we define the 1-parameter subgroup

$$\alpha_i^{\vee}: t \mapsto diag(1, ..., t, t^{-1}, 1, ..., 1), \quad i = 1, ..., n-1,$$

then $\omega_k \circ \alpha_i^{\vee}(t) = \delta_{ik}$.

Fix $1 \le k \le n$. We know that the line $\mathbb{C}e_1 \land \cdots \land e_k \subset V_{\omega_k}$ is *B*-invariant: this is the same as saying that the point $[e_1 \land \cdots \land e_k] \in \mathbb{P}(V_{\omega_k}) \cong \mathbb{P}^{\binom{n}{k}-1}$ is fixed by the action of *B* on $\mathbb{P}(V_{\omega_k})$ (why is this well-defined action?). However, via the induced action of *G* on $\mathbb{P}(V_{\omega_k})$, it can be seen that

$$\operatorname{Stab}_G([e_1 \wedge \cdots \wedge e_k]) = \left\{ \begin{bmatrix} *_k & * \\ 0 & *_{n-k} \end{bmatrix} \right\},$$

a parabolic subgroup of G. Denote this parabolic subgroup P_k . It is a fact that P_k is a maximal parabolic subgroup.

Hence, we get an identification

$$G/P_k \cong G \cdot [e_1 \wedge \cdots \wedge e_k] \subset \mathbb{P}(V_{\omega_k})$$

Recall the weight basis $\{e_{i_1} \land \dots \land e_{i_k} \mid 1 \le i_1 < \dots < i_k \le n\}$ of V_{ω_k} . For a subset $J \subset \{1, \dots, n\}$ of cardinality k, denote the element of the dual basis $x_J \in V_{\omega_k}^*$. Hence, we can consider

$$\mathbb{P}(V_{\omega_k}) \longleftrightarrow \mathbb{P}^{\binom{n}{k}-1} ; [v] \longleftrightarrow [x_J(v)]$$

For example, when n = 4 we have $V_{\omega_2} = \bigwedge^2 \mathbb{C}^4$ and we get an isomorphism

$$\mathbb{P}(V_{\omega_2}) \longleftrightarrow \mathbb{P}^5; [v] \longleftrightarrow [x_{12}(v) : x_{13}(v) : x_{14}(v) : x_{23}(v) : x_{24}(v) : x_{34}(v)]$$

In particular, we identify

$$[e_1 \land e_2] \leftrightarrow [1:0:0:0:0:0],$$
$$[e_1 \land e_3] \leftrightarrow [0:1:0:0:0:0] \quad etc$$

We have already seen how to identify G/P_k with Gr(k, n) (although in a slightly different way): we can think of a k-dimensional subspace $U \subset \mathbb{C}^n$ as the **column-span** of the first k columns of an invertible matrix $A = [a_1 \cdots a_n]$, so $U = col(a_1, \ldots, a_k)$.

Given a matrix A we will write $col_k(A)$ for the column span of the first k columns.

If we define an action of G on Gr(k, n) by

$$g \cdot U \stackrel{def}{=} \operatorname{col}_k(gA)$$
, where $U = \operatorname{col}_k(A)$,

the stabiliser of $U = \text{span}(e_1, \dots, e_k)$ is P_k . Note that this action is well-defined. Hence, as the action of G is transitive we obtain $\text{Gr}(k, n) \equiv G/P_k$. We can realise this equivalence of G-sets through the map

$$G \rightarrow Gr(k, n)$$
; $g \mapsto g \cdot span(e_1, ..., e_k)$

Namely, we can factor

$$\begin{array}{ccc} G & \rightarrow & \mathrm{Gr}(k,n) \\ \downarrow & \swarrow \\ G/P_k \end{array}$$

The inverse of the dashed arrow is the map

$$Gr(k, n) \rightarrow G/P_k$$
; $U = col_k(A) \mapsto AP_k$,

This is well-defined.

Remark: we have had to be careful here so that we get an identification of the **left cosets** gP_k with k-dimensional subspaces of \mathbb{C}^n .

Given a subset $J = \{i_1, ..., i_k\} \subset \{1, ..., n\}$ of cardinality k, and an $n \times n$ matrix A, we can form the $k \times k$ minor $\Delta_J(A)$ with columns 1, ..., k and rows $i_1, ..., i_k$. As we saw in the first week for n = 3, k = 2, we can **coordinatise** Gr(k, n) using these **Plucker coordinates**

$$\operatorname{Gr}(k, n) \to \mathbb{P}^{\binom{n}{k}-1}; \ U = \operatorname{col}_k(A) \mapsto [\Delta_J(A)].$$

In particular, the **Plucker embedding** above is injective. (*We can even give a description of the image of this map as a projective variety*)

Let's see how these coordinates arrive in the representation-theoretic framework: denote the natural pairing between a vector space W and its dual W^* by

$$\langle,\rangle: W^* \times W \to \mathbb{C}; (\alpha, \nu) \mapsto \langle \alpha, \nu \rangle.$$

Consider the following functions on G:

$$\xi_J: g \mapsto \langle x_J, g(e_1 \wedge \cdots \wedge e_k) \rangle$$

If we consider the representation of G defined by V_{ω_k} , then $\xi_J(g)$ is the (J, 1) entry of the matrix of the action of g on V_{ω_k} , with respect to the weight basis.

Since V_{ω_k} is a rational representation, the $\xi_J \in A_G$ are regular functions on G, and are P_k -invariant in the sense that $\xi_J(gp) = \xi_J(g)$, for any $p \in P_k$. Thus, they descend to the quotient G/P_k , so that we obtain functions $\xi_J : G/P_k \to \mathbb{C}$.

If the columns of g are g_1, \ldots, g_n then we have

$$\xi_J(g) = \langle x_J, g_1 \wedge \cdots \wedge g_k \rangle = \Delta_J(g).$$

One way to check this without performing a calculation is to use the following characterisation of the determinant: there exists a unique function $f : \mathbb{C}^k \times \cdots \mathbb{C}^k \to \mathbb{C}$ (k copies of \mathbb{C}^k , though of as row vectors) such that

- 1. *f* is alternating, $f(u_1, ..., u_i, ..., u_i, ..., u_k) = -f(u_1, ..., u_i, ..., u_k)$,
- 2. f is multilinear, ie, it is linear in each of its arguments,
- 3. $f(e_1, \ldots, e_k) = 1$.

In summary: the Plucker embedding of the Grassmannian has an intrinsic characterisation (without reference to minors). The Grassmannian is the image in $\mathbb{P}(V_{\omega_k})$ of the morphism

$$G/P_k \to \mathbb{P}(V_{\omega_k})$$
; $gP_k \mapsto [gu]$,

where $u \in V_{\omega_k}$ is any highest weight vector (so that $tu = \omega_k(t)u$).

We observe that the homogenous coordinate ring of G/P_k under this embedding is isomorphic to the **Plucker algebra** $\mathbb{C}[\Delta_J]$.

Now, let $\lambda = \sum_i \lambda_i \chi_i$ be a weight such that $\lambda_1 \ge ... \ge \lambda_n \ge 0$ and $u \in V_\lambda$ a highest weight vector (so that $tu = \lambda(t)u$, for $t \in T$). If we set $a_i = \lambda_i - \lambda_{i+1} \ge 0$, $a_n = \lambda_n$, then we can write

$$\lambda = a_1 \omega_1 + a_2 \omega_2 + \dots + a_n \omega_n$$

The action of G on V_{λ} is linear so that it descends to an action on $\mathbb{P}(V_{\lambda})$

$$g \cdot [v] \stackrel{def}{=} [gv].$$

Recall that [v] is *B*-invariant, so that $B \subset \text{Stab}_G([v]]$ and $P_\lambda \stackrel{def}{=} \text{Stab}_G([v])$ is a parabolic subgroup of *G*. Hence, G/P_λ is a projective variety and we have determined an embedding

$$G/P_{\lambda} \to \mathbb{P}(V_{\lambda})$$
; $gP_{\lambda} \mapsto [gv]$.

Fact: if $\lambda = a_1\omega_1 + ... + a_n\omega_n$ and $I = \{i \mid a_i \neq 0\} = \{d_1 < ... < d_k\}$ then $\operatorname{Stab}_G([v])$ is a parabolic subgroup consisting of block upper triangular matrices of size $d_1, d_2-d_1, ..., d_k-d_{k-1}$. Moreover, G/P_{λ} is isomorphic to the multistep Grassmannian $\operatorname{Gr}(d_1, d_2, ..., d_k)$. In particular, whenever $I = \{1, ..., n\}$ we obtain an embedding of the full flag variety G/B in some projective space.