UC Berkeley Summer Undergraduate Research Program 2015 July 7 Lecture

Today we will see how to use representation theory to produce embeddings of the flag variety (and partial flag varieties) inside some projective space \mathbb{P}^{M}.

Fix $G=G L_{n}$ and let $T \subset B \subset G$ be the diagonal matrices sitting inside the upper triangular matrices.

Recall that the irreducible (finite dimensional) representations of G are indexed by partitions $\lambda: \lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$. In general, it's not so easy to determine V_{λ} ! However, we have seen that the representations $\Lambda^{k} \mathbb{C}^{n}$ are irreducible with highest weight

$$
\omega_{i} \stackrel{\text { def }}{=} \chi_{1}+\ldots+\chi_{k}:
$$

we will now write $V_{\omega_{k}}=\Lambda^{k} \mathbb{C}^{n}$. These weights are called the fundamental weights. Observe that if we define the 1-parameter subgroup

$$
\alpha_{i}^{\vee}: t \mapsto \operatorname{diag}\left(1, \ldots, t, t^{-1}, 1, \ldots, 1\right), \quad i=1, \ldots, n-1
$$

then $\omega_{k} \circ \alpha_{i}^{\vee}(t)=\delta_{i k}$.
Fix $1 \leq k \leq n$. We know that the line $\mathbb{C} e_{1} \wedge \cdots \wedge e_{k} \subset V_{\omega_{k}}$ is B-invariant: this is the same as saying that the point $\left[e_{1} \wedge \cdots \wedge e_{k}\right] \in \mathbb{P}\left(V_{\omega_{k}}\right) \cong \mathbb{P}\binom{n}{k}-1$ is fixed by the action of B on $\mathbb{P}\left(V_{\omega_{k}}\right)$ (why is this well-defined action?). However, via the induced action of G on $\mathbb{P}\left(V_{\omega_{k}}\right)$, it can be seen that

$$
\operatorname{Stab}_{G}\left(\left[e_{1} \wedge \cdots \wedge e_{k}\right]\right)=\left\{\left[\begin{array}{cc}
*_{k} & * \\
0 & *_{n-k}
\end{array}\right]\right\},
$$

a parabolic subgroup of G. Denote this parabolic subgroup P_{k}. It is a fact that P_{k} is a maximal parabolic subgroup.

Hence, we get an identification

$$
G / P_{k} \cong G \cdot\left[e_{1} \wedge \cdots \wedge e_{k}\right] \subset \mathbb{P}\left(V_{\omega_{k}}\right)
$$

Recall the weight basis $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mid 1 \leq i_{1}<\ldots<i_{k} \leq n\right\}$ of $V_{\omega_{k}}$. For a subset $J \subset\{1, \ldots, n\}$ of cardinality k, denote the element of the dual basis $x_{J} \in V_{\omega_{k}}^{*}$. Hence, we can consider

$$
\mathbb{P}\left(V_{\omega_{k}}\right) \longleftrightarrow \mathbb{P}^{\binom{n}{k}-1} ;[v] \longleftrightarrow\left[x_{J}(v)\right]
$$

For example, when $n=4$ we have $V_{\omega_{2}}=\bigwedge^{2} \mathbb{C}^{4}$ and we get an isomorphism

$$
\mathbb{P}\left(V_{\omega_{2}}\right) \longleftrightarrow \mathbb{P}^{5} ;[v] \longleftrightarrow\left[x_{12}(v): x_{13}(v): x_{14}(v): x_{23}(v): x_{24}(v): x_{34}(v)\right]
$$

In particular, we identify

$$
\begin{gathered}
{\left[e_{1} \wedge e_{2}\right] \leftrightarrow[1: 0: 0: 0: 0: 0]} \\
{\left[e_{1} \wedge e_{3}\right] \leftrightarrow[0: 1: 0: 0: 0: 0] \quad \text { etc. }}
\end{gathered}
$$

We have already seen how to identify G / P_{k} with $\operatorname{Gr}(k, n)$ (although in a slightly different way): we can think of a k-dimensional subspace $U \subset \mathbb{C}^{n}$ as the column-span of the first k columns of an invertible matrix $A=\left[a_{1} \cdots a_{n}\right]$, so $U=\operatorname{col}\left(a_{1}, \ldots, a_{k}\right)$.

Given a matrix A we will write $\operatorname{col}_{k}(A)$ for the column span of the first k columns.

If we define an action of G on $\operatorname{Gr}(k, n)$ by

$$
g \cdot U \stackrel{\text { def }}{=} \operatorname{col}_{k}(g A), \quad \text { where } U=\operatorname{col}_{k}(A),
$$

the stabiliser of $U=\operatorname{span}\left(e_{1}, \ldots, e_{k}\right)$ is P_{k}. Note that this action is well-defined. Hence, as the action of G is transitive we obtain $\operatorname{Gr}(k, n) \equiv G / P_{k}$. We can realise this equivalence of G-sets through the map

$$
G \rightarrow \operatorname{Gr}(k, n) ; g \mapsto g \cdot \operatorname{span}\left(e_{1}, \ldots, e_{k}\right) .
$$

Namely, we can factor

$$
\begin{array}{ccc}
G & \rightarrow & \operatorname{Gr}(k, n) \\
\downarrow & , & \\
G / P_{k} & &
\end{array}
$$

The inverse of the dashed arrow is the map

$$
\operatorname{Gr}(k, n) \rightarrow G / P_{k} ; U=\operatorname{col}_{k}(A) \mapsto A P_{k},
$$

This is well-defined.

Remark: we have had to be careful here so that we get an identification of the left cosets $g P_{k}$ with k-dimensional subspaces of \mathbb{C}^{n}.
Given a subset $J=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ of cardinality k, and an $n \times n$ matrix A, we can form the $k \times k$ minor $\Delta_{J}(A)$ with columns $1, \ldots, k$ and rows i_{1}, \ldots, i_{k}. As we saw in the first week for $n=3, k=2$, we can coordinatise $\operatorname{Gr}(k, n)$ using these Plucker coordinates

$$
\operatorname{Gr}(k, n) \rightarrow \mathbb{P}_{k}^{\binom{n}{k}-1} ; U=\operatorname{col}_{k}(A) \mapsto\left[\Delta_{J}(A)\right] .
$$

In particular, the Plucker embedding above is injective. (We can even give a description of the image of this map as a projective variety)
Let's see how these coordinates arrive in the representation-theoretic framework: denote the natural pairing between a vector space W and its dual W^{*} by

$$
\langle,\rangle: W^{*} \times W \rightarrow \mathbb{C} ;(\alpha, v) \mapsto\langle\alpha, v\rangle .
$$

Consider the following functions on G :

$$
\xi_{J}: g \mapsto\left\langle x_{J}, g\left(e_{1} \wedge \cdots \wedge e_{k}\right)\right\rangle
$$

If we consider the represenation of G defined by $V_{\omega_{k}}$, then $\xi_{J}(g)$ is the $(J, 1)$ entry of the matrix of the action of g on $V_{\omega_{k}}$, with respect to the weight basis.
Since $V_{\omega_{k}}$ is a rational representation, the $\xi_{J} \in A_{G}$ are regular functions on G, and are $P_{k^{-}}$ invariant in the sense that $\xi\lrcorner(g p)=\xi\lrcorner(g)$, for any $p \in P_{k}$. Thus, they descend to the quotient G / P_{k}, so that we obtain functions $\xi_{J}: G / P_{k} \rightarrow \mathbb{C}$.

If the columns of g are g_{1}, \ldots, g_{n} then we have

$$
\xi_{J}(g)=\left\langle x_{J}, g_{1} \wedge \cdots \wedge g_{k}\right\rangle=\Delta_{J}(g) .
$$

One way to check this without performing a calculation is to use the following characterisation of the determinant: there exists a unique function $f: \mathbb{C}^{k} \times \cdots \mathbb{C}^{k} \rightarrow \mathbb{C}\left(k\right.$ copies of \mathbb{C}^{k}, though of as row vectors) such that

1. f is alternating, $f\left(u_{1}, \ldots, u_{i}, \ldots, u_{j}, \ldots, u_{k}\right)=-f\left(u_{1}, \ldots, u_{j}, \ldots, u_{i}, \ldots, u_{k}\right)$,
2. f is multilinear, ie, it is linear in each of its arguments,
3. $f\left(e_{1}, \ldots, e_{k}\right)=1$.

In summary: the Plucker embedding of the Grassmannian has an intrinsic characterisation (without reference to minors). The Grassmannian is the image in $\mathbb{P}\left(V_{\omega_{k}}\right)$ of the morphism

$$
G / P_{k} \rightarrow \mathbb{P}\left(V_{\omega_{k}}\right) ; g P_{k} \mapsto[g u],
$$

where $u \in V_{\omega_{k}}$ is any highest weight vector (so that $t u=\omega_{k}(t) u$).
We observe that the homogenous coordinate ring of G / P_{k} under this embedding is isomorphic to the Plucker algebra $\mathbb{C}\left[\Delta_{J}\right]$.
Now, let $\lambda=\sum_{i} \lambda_{i} \chi_{i}$ be a weight such that $\lambda_{1} \geq \ldots \geq \lambda_{n} \geq 0$ and $u \in V_{\lambda}$ a highest weight vector (so that $t u=\lambda(t) u$, for $t \in T$). If we set $a_{i}=\lambda_{i}-\lambda_{i+1} \geq 0, a_{n}=\lambda_{n}$, then we can write

$$
\lambda=a_{1} \omega_{1}+a_{2} \omega_{2}+\ldots+a_{n} \omega_{n} .
$$

The action of G on V_{λ} is linear so that it descends to an action on $\mathbb{P}\left(V_{\lambda}\right)$

$$
g \cdot[v] \stackrel{\operatorname{def}}{=}[g v] .
$$

Recall that $[v]$ is B-invariant, so that $B \subset \operatorname{Stab}_{G}([v]]$ and $P_{\lambda} \stackrel{\operatorname{def}^{=}}{=} \operatorname{Stab}_{G}([v])$ is a parabolic subgroup of G. Hence, G / P_{λ} is a projective variety and we have determined an embedding

$$
G / P_{\lambda} \rightarrow \mathbb{P}\left(V_{\lambda}\right) ; g P_{\lambda} \mapsto[g v] .
$$

Fact: if $\lambda=a_{1} \omega_{1}+\ldots+a_{n} \omega_{n}$ and $I=\left\{i \mid a_{i} \neq 0\right\}=\left\{d_{1}<\ldots<d_{k}\right\}$ then $\operatorname{Stab}_{G}([v])$ is a parabolic subgroup consisting of block upper triangular matrices of size $d_{1}, d_{2}-d_{1}, \ldots, d_{k}-$ d_{k-1}. Moreover, G / P_{λ} is isomorphic to the multistep $\operatorname{Grassmannian} \operatorname{Gr}\left(d_{1}, d_{2}, \ldots, d_{k}\right)$. In particular, whenever $I=\{1, \ldots, n\}$ we obtain an embedding of the full flag variety G / B in some projective space.

