UC Berkeley Summer Undergraduate Research Program 2015 July 2 Lecture

We introduced some of the basic structure theory for the general linear group $G=G L(V)$, where V is a finite dimensional \mathbb{C}-vector space. We introduced several classes of subgroups of G :

$$
T, U \subset B \subset P \subset G
$$

and introduced some representations for G, the exterior powers $\Lambda^{k} V$. Note that these representations have the property that there exists a simultaneous eigenbasis for T; in fact, this is always the case. We will discuss the internal structure of a representation of G today by investigating what the representation looks like as a representation of T, U and B (and B_{-} (the opposite standard Borel)).
Highest weight theory and roots: Fix a maximal torus T in GL_{n} - we may as well assume that this is the standard torus, since all maximal tori are conjugate. The group of characters of T (also called the weight lattice) is the set of group homomorphisms

$$
X^{*}(T) \stackrel{\text { def }}{=} \operatorname{Hom}_{\text {alg. }} \mathbf{g p}\left(T, \mathbb{C}^{\times}\right)
$$

that are also morphisms of algebraic varieties. We have already seen that $X^{*}(T) \cong \mathbb{Z}^{n}$: in fact, we observe that the projections $x_{j j}: T \rightarrow \mathbb{C}^{*}$ provide a basis for the free abelian group $X^{*}(T)$. This is the same as saying that $A_{T} \cong \mathbb{C}\left[x_{11}^{ \pm}, \ldots, x_{n n}^{ \pm}\right]$. We will denote these (special) characters $\chi_{j} \stackrel{\text { def }}{=} x_{j j}$.
Fact: for any representation (W, ρ), every element $\rho(t) \in \mathrm{GL}(W), t \in T$, is diagonalisable.

Hence, since $\rho(T) \subset G L(W)$ is a commutative subgroup consisting of diagonalisable elements, we can find a simultaneous eigenbasis $\left\{w_{1}, \ldots, w_{m}\right\}$ of W. This means that

$$
t \cdot w_{i}=\alpha_{i}(t) w_{i},
$$

where $\alpha_{i}: T \rightarrow \mathbb{C}^{\times}$takes $t \in T$ to the eigenvalue $\alpha_{i}(t)$ of the linear operator $\rho(t)$ associated with the eigenvector w_{i}. Furthermore, since

$$
t \cdot\left(t^{\prime} \cdot w_{i}\right)=\left(t t^{\prime}\right) \cdot w_{i},
$$

we have $\alpha_{i} \in X^{*}(T)$. The set $\Lambda(W) \stackrel{\text { def }}{=}\left\{\alpha_{i}\right\} \subset X^{*}(T)$ is called the set of weights of W; elements of the eigenbasis are called weight vectors.

1. Let \mathbb{C}^{n} be the defining representation of $\mathrm{GL}_{n},\left(e_{1}, \ldots, e_{n}\right)$ the standard basis. Then, in any of the wedge products $W_{(k)}=\bigwedge^{k} \mathbb{C}^{n}$, the basis of 'standard' wedges $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \mid 1 \leq\right.$ $\left.i_{1}<\ldots<i_{k} \leq n\right\}$ is a simultaneous eigenbasis; the set of weights is

$$
\Lambda\left(W_{(k)}=\left\{\sum_{j=1}^{k} \chi_{i_{j}} \mid\left\{i_{1}, \ldots, i_{k}\right\} \subset[n]\right\}\right.
$$

since

$$
\begin{gathered}
t \cdot e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}=t_{i_{1}} \cdots t_{i_{k}} e_{i_{1}} \wedge \cdots \wedge e_{i_{k}} \\
=\chi_{i_{1}}(t) \cdots \chi_{i_{k}}(t) e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}=\left(\chi_{i_{1}}+\ldots+\chi_{i_{k}}\right)(t) e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}
\end{gathered}
$$

for any $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$. Note that we are using additive notation for the (abelian) group of characters.
2. (Important Example) Consider the adjoint representation

$$
\mathrm{Ad}: G \rightarrow \mathrm{GL}\left(M_{n}\right) ; g \mapsto\left[X \mapsto g X g^{-1}\right]
$$

You can check that this is a well-defined representation: it's linear, and a morphism of algebraic varieties.

The matrices $E_{i j}$, with 0 s everywhere except for a 1 in the $i j$-entry, are a simultaneous eigenbasis for T. For example, we have

$$
t \cdot E_{i j}=t E_{i j} t^{-1}=t_{i} t_{j}^{-1} E_{i j}=\left(\chi_{i}-\chi_{j}\right)(t) E_{i j}, \quad t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \in T
$$

This representation is fundamental: it can be shown that we can identify M_{n} with the Lie algebra $\mathfrak{g l}_{n}$ of G, the tangent space of G at the identity. This representation can be thought of as the derivative of the action of G on itself by conjugation. It's nice that it turns out be conjugation again!

Due to their central role in the representation theory of G, we elements in $\Lambda\left(M_{n}\right)$ the roots of G, and denote $R=\Lambda\left(M_{n}\right)$.

The weights $\alpha_{i} \stackrel{\text { def }}{=} \chi_{i}-\chi_{i+1} \in X^{*}(T), i=1, \ldots, n-1$, which we'll call the simple roots of G (relative to B), play an important role: observe that

$$
\chi_{i}-\chi_{j}=\alpha_{i}+\ldots+\alpha_{j-1}, \quad \text { whenever } i<j
$$

and

$$
\chi_{i}-\chi_{j}=-\left(\alpha_{i}+\ldots+\alpha_{j-1}\right), \quad \text { whenever } j<i .
$$

In particular, every root of G can be written as an integral sum $\sum_{\alpha \in R} n_{\alpha} \alpha$, with every n_{α} either nonnegative, or nonpositive.

The lattice generated by R inside $X^{*}(T)$, denoted Σ, is called the root lattice of G : observe that the root lattice is not equal to the character lattice. In fact, Σ sits inside the lattice $\left\{\sum_{i} a_{i} \chi_{i} \mid \sum_{i} a_{i}=0\right\}$.

Fact: consider the \mathbb{R}-span $\Sigma_{\mathbb{R}}$ of Σ, sitting inside the \mathbb{R}-span of X^{*}. The roots $R \subset \Sigma_{\mathbb{R}}$ are a (reduced) root system:
(a) $\operatorname{span}_{\mathbb{R}}(R)=\Sigma_{\mathbb{R}}$,
(b) if $\alpha \in R$, and $c \alpha \in \mathbb{R}$, then $c= \pm 1$,
(c) R is preserved under the linear operators

$$
s_{\alpha}: v \mapsto v-2 \frac{(\alpha, v)}{(\alpha, \alpha)} \alpha, \quad \alpha \in R
$$

(d) the real numbers $2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$ are integers.

For $G=G L_{n}$, the numbers $2 \frac{(\alpha, \beta)}{(\alpha, \alpha)} \in\{0, \pm 1\}$. Moreover, s_{α} is the reflection through the hyperplane orthogonal to α in $\Sigma_{\mathbb{R}}$.

Given $\alpha=\chi_{i}-\chi_{j} \in R, i \neq j$, definte the root subgroup $U_{\alpha} \subset G$ to be the unipotent group

$$
U_{\alpha}=I_{n}+\mathbb{C} E_{i j} .
$$

The root subgroups are subgroups isomorphic to \mathbb{C}, normalised by T so that

$$
t\left(I_{n}+c E_{i j}\right) t^{-1}=I_{n}+\alpha(t) c E_{i j}
$$

The representation theory of G can be described as follows:

1. every irreducible representation V of G admits a unique line $L=\operatorname{span}(v) \subset V$, with v a weight vector of weight λ, with $\lambda=\sum_{i} \lambda_{i} \chi_{i}$, and where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ is a nondecreasing sequence of integers; we call λ the highest weight of V. Moreover, to any such sequence of integers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ there is an irreducible representation with highest weight λ. We denote this irreducible representation by V_{λ}
2. the weights appearing in an irreducible representation V_{λ} are of the form

$$
\mu=\lambda-\sum_{i} n_{i} \alpha_{i}, \quad n_{i} \in \mathbb{Z}_{\geq 0}
$$

