UC Berkeley Summer Undergraduate Research Program 2015 July 1 Lecture

We are going to introduce some of the basic structure of the general linear group $\mathrm{GL}(V)$, where V is a finite dimensional \mathbb{C}-vector space. (And properties of the symplectic group $\operatorname{Sp}(V)$, if there's time.)

References for this material can be found:

1. Goodman-Wallach 'Symmetries, Representations, Invariants’ ('freely' available online)
2. Any book on linear algebraic groups eg. Humphreys 'Linear Algebraic Groups; Springer 'Linear Algebraic Groups'; Borel 'Linear Algebraic Groups' (2nd Edition) (these are in increasing order of difficulty, in my opinion.)
3. Online notes by: Dave Anderson 'Linear Algebraic Groups: a crash course'; Kleschev 'Lectures on Algebraic Groups'; Szamuely 'Lectures on Algebraic Groups'... lots of references.

Be warned: you can spend a whole semester/year studying the structure of algebraic groups. We will see the main ideas illuminated for $\mathrm{GL}(V)$ (and $\operatorname{Sp}(V)$).
Basic structure results: Fix a basis of V; this gives $G L(V) \cong G L_{n}(\mathbb{C})$. Inside $G L_{n}(\mathbb{C})$ there are some special (and well-known) subgroups:

$$
T=\{\text { diagonal }\} \subset B=\{\text { upper-triangular }\} \subset \mathrm{GL}_{n} .
$$

We will call T the standard maximal torus and B the standard (upper) Borel.
We can characterise these subgroups in an intrinsic manner:

- first, observe that all of these subgroups are closed subgroups (in the Zariski topology); hence, they are subvarieties of the (affine) algebraic variety GL_{n}.
- T is commutative and consists of diagonalisable elements; it is maximal with respect to this property. Indeed, if $S \supset T$ and S is commutative and contains diagonalisable elements then we can find a simultaneous eigenbasis for \mathbb{C}^{n}, containing $\left(e_{1}, \ldots, e_{n}\right)$. Hence, this eigenbasis must be equal to the standard basis and $S=T$.
- B admits a simultaneous eigenvector, namely e_{1}; or, we can say that B fixes a point (=line) in $\mathbb{P}(V) . \quad B$ also has the property that it is solvable: the descending chain terminates in $\{e\}$

$$
B=B_{0} \supset B_{1} \stackrel{\text { def }}{=}\left(B_{0}, B_{0}\right) \supset B_{2} \stackrel{\text { def }}{=}\left(B_{1}, B_{1}\right) \supset \cdots \supset B_{i} \stackrel{\text { def }}{=}\left(B_{i-1}, B_{i-1}\right) \supset \cdots
$$

where $(H, H)=\left\{g h g^{-1} h^{-1} \mid g, h \in H\right\}$ is the commutator of H. This is an interesting (but tedious) exercise.

We can now define certain types of subgroups in GL_{n} (generalising the above fixed subgroups):

- a maximal torus $S \subset G L_{n}$ is a commutative, connected, closed subgroup containing diagonalisable elements, that is contained in no other such group in GL_{n},
- a Borel subgroup $B^{\prime} \subset G L_{n}$ is a maximal solvable, connected, closed subgroup,
- a parabolic subgroup $P \subset G L_{n}$ is a connected, closed subgroup containing some Borel subgroup B^{\prime}; a parabolic containing the standard Borel is called a standard parabolic.
- a unipotent subgroup $U \subset G L_{n}$ is a closed subgroup containing unipotent elements: these are elements $u \in \mathrm{GL}_{n}$ that have characteristic polynomial $\chi(t)= \pm(t-1)^{n}$,
- the Weyl group of GLn is defined to be $W \stackrel{\text { def }}{=} N_{G}(T) / T$: you can check that this is isomorphic to S_{n}.

Here are some basic (but nontrivial!) facts:

1. All Borel subgroups are conjugate.
2. $N_{G}(B)=B$, for any Borel $B ; N_{G}(P)=P$, for any parabolic P.
3. The coset space G / H can be given the structure of a projective variety (so that the natural quotient map $G \rightarrow G / H$ is a morphism of algebraic varieties) if and only if H is parabolic.
4. (Lie-Kolchin) Any Borel subgroup fixes a unique flag $V_{\boldsymbol{\bullet}}$.
5. (Bruhat decomposition) $\mathrm{GL}_{n}=\bigsqcup_{w \in S_{n}} U_{-} w B$,
6. All maximal tori are conjugate (so they have the same dimension).
7. The union of all maximal tori is dense in GL_{n}; ie, the set of al diagonalisable elements in $G L_{n}$ is dense.
8. Let B be a Borel. Then, B admits a unique maximal normal unipotent subgroup (called the unipotent radical of B; the quotient B / U is isomorphic to some maximal torus in B. Hence, we have $B \cong T \times U$ as a variety (but a semidirect product of groups).
9. Any standard parabolic subgroup $P \subset G L_{n}$ is of the form

$$
P=\left\{\left[\begin{array}{cccc}
*_{d_{1}} & * & \cdots & * \\
0 & *_{d_{2}} & \cdots & * \\
0 & 0 & \ddots & \vdots \\
& & & *_{d_{r}}
\end{array}\right]\right\}
$$

where $d_{1}+d_{2}+\ldots+d_{r}=n$ and $*_{d_{j}}$ represents an invertible $d_{j} \times d_{j}$ block.
By (1), (2), (3) we see that $G L_{n} / B$ is a projective variety, called the flag variety of $G L_{n}$, and

$$
\mathrm{GL}_{n} / B=\left\{\text { Borel subgroups of } \mathrm{GL}_{n}\right\} \leftrightarrow \mathrm{FI}_{n}=\left\{\text { flags in } \mathbb{C}^{n}\right\} .
$$

Moreover, (5) tells us that there are finitely U_{-}orbits on the flag variety, indexed by elements of the symmetric group. This is precisely the cell decomposition we saw last week.

Some representation theory: We are now going to introduce some of the representation theory of GL_{n}; a good reference is Goodman-Wallach.
A (rational) representation of GL_{n} is a morphism of algebraic varieties $\rho: \mathrm{GL}_{n} \rightarrow \mathrm{GL}(W)$, with W a finite dimensional \mathbb{C}-vector space, that is also a group homomorphism. If we fix a basis of W then this becomes a map

$$
\rho: \mathrm{GL}_{n} \rightarrow \mathrm{GL}_{m} ; g \mapsto \rho(g)=\left[\rho_{i j}(g)\right],
$$

where the matrix coefficients $\rho_{i j}(g)$ are elements in the coordinate ring of $G L_{n}$; hence, they are polynomials in $x_{i j}, 1 \leq i, j \leq n$, and det^{-1}. We will also sometimes call W a representation of $G L_{n}$ when the map ρ is understood; and simply write $g \cdot v$, by abuse of notation.

1. The defining representation is the map $\rho=\mathrm{id}: G L_{n} \rightarrow G L_{n}$.
2. The determinant representation is the representation det: $G L_{n} \rightarrow G L(\mathbb{C})=\mathbb{C}^{\times}$.
3. If $\left(V, \rho_{1}\right),\left(W, \rho_{2}\right)$ are representations then $(V \oplus W, \rho)$ is a representation, where $\rho(g)(v, w)=$ $\left(\rho_{1}(g) v, \rho_{2}(g) w\right)$.
4. If W is a representation then so is $\bigwedge^{k} W$, where $g \cdot\left(w_{1} \wedge \cdots \wedge w_{k}\right)=\left(g \cdot w_{1}\right) \wedge \cdots \wedge\left(g \cdot w_{k}\right)$, and we extend linearly.
5. If W is a representation then so is W^{*} : for $\alpha \in W^{*}$ we define $g \cdot \alpha$ to be the linear function

$$
g \cdot \alpha: w \mapsto \alpha\left(g^{-1} \cdot w\right)
$$

Let W be a representation of $G L_{n}$.

- a subspace $U \subset W$ that is $G L_{n}$-invariant is called a subrepresentation.
- W is irreducible if the only subrepresentations of W are $\{0\}$ and W.
- a morphism of representations W, W^{\prime} is a linear map $T: W \rightarrow W^{\prime}$ such that $T(g w)=$ $g T(w)$, for every $g \in \mathrm{GL}_{n}, w \in W^{\prime}$. A morphism is an isomorphism if T is an isomorphism.

Complete irreducibility: let W be a finite dimensional representation of GL_{n}. Then, there exist irreducible subrepresentations W_{1}, \ldots, W_{r} (not necessarily distinct, nor unique) such that $W=W_{1} \oplus \cdots \oplus W_{r}$.

Complete reducibilty means that in order to understand the (finite dimensional) representations of $G L_{n}$ we need only determine all of the irreducible representations.
It can be checked that the representations $\bigwedge^{k} \mathbb{C}^{n}$ are irreducible representations, for $1 \leq k \leq n$. (Do an example) Note that a basis for $\bigwedge^{k} \mathbb{C}^{n}$ is given by

$$
\left\{e_{J}|J \subset\{1, \ldots, n\},|J|=k\} .\right.
$$

Observe that $\bigwedge^{n} \mathbb{C}^{n}$ is just the determinant representation. In fact, the determinant representation is what constitutes (essentially) the only difference between the representation theory of $\mathrm{GL}(V)$ and $\mathrm{SL}(V)$.

Highest weight theory and roots: Fix a maximal torus T in $G L_{n}$ - we may as well assume that this is the standard torus, since all maximal tori are conjugate. The group of characters of T (sometimes called the weight lattice) is the set of group homomorphisms

$$
X^{*}(T) \stackrel{\text { def }}{=} \operatorname{Hom}_{\text {alg. }} \mathbf{g p}\left(T, \mathbb{C}^{\times}\right)
$$

that are also morphisms of algebraic varieties. We have already seen that $X^{*}(T) \cong \mathbb{Z}^{n}$: in fact, we observe that the projections $x_{j j}: T \rightarrow \mathbb{C}^{*}$ provide a basis for the free abelian group $X^{*}(T)$. We will denote these characters χ_{j}.

Fact: for any representation (W, ρ), every element $\rho(t) \in \mathrm{GL}(W), t \in T$, is diagonalisable. Hence, since $\rho(T) \subset G L(W)$ is a commutative subgroup consisting of diagonalisable elements, we can find a simultaneous eigenbasis $\left\{w_{1}, \ldots, w_{m}\right\}$ of W. This means that

$$
t \cdot w_{i}=\alpha_{i}(t) w_{i},
$$

where $\alpha_{i}: T \rightarrow \mathbb{C}^{\times}$takes $t \in T$ to the eigenvalue $\alpha_{i}(t)$ of the linear operator $\rho(t)$ associated with the eigenvector w_{i}. Furthermore, since

$$
t \cdot\left(t^{\prime} \cdot w_{i}\right)=\left(t t^{\prime}\right) \cdot w_{i}
$$

we have $\alpha_{i} \in X^{*}(T)$. The set $\left\{\alpha_{i}\right\} \subset X^{*}(T)$ is called the set of weights of W.
Examples.

