
UC Berkeley Summer Undergraduate Research Program 2015
July 1 Lecture

We are going to introduce some of the basic structure of the general linear group GL(V ),
where V is a finite dimensional C-vector space. (And properties of the symplectic group Sp(V ),
if there’s time.)

References for this material can be found:

1. Goodman-Wallach ‘Symmetries, Representations, Invariants’ (‘freely’ available online)

2. Any book on linear algebraic groups eg. Humphreys ‘Linear Algebraic Groups; Springer
‘Linear Algebraic Groups’; Borel ‘Linear Algebraic Groups’ (2nd Edition) (these are in
increasing order of difficulty, in my opinion.)

3. Online notes by: Dave Anderson ‘Linear Algebraic Groups: a crash course’; Kleschev
‘Lectures on Algebraic Groups’; Szamuely ‘Lectures on Algebraic Groups’... lots of refer-
ences.

Be warned: you can spend a whole semester/year studying the structure of algebraic groups.
We will see the main ideas illuminated for GL(V ) (and Sp(V )).

Basic structure results: Fix a basis of V ; this gives GL(V ) ∼= GLn(C). Inside GLn(C) there
are some special (and well-known) subgroups:

T = {diagonal} ⊂ B = {upper-triangular} ⊂ GLn.

We will call T the standard maximal torus and B the standard (upper) Borel.

We can characterise these subgroups in an intrinsic manner:

- first, observe that all of these subgroups are closed subgroups (in the Zariski topology);
hence, they are subvarieties of the (affine) algebraic variety GLn.

- T is commutative and consists of diagonalisable elements; it is maximal with respect to
this property. Indeed, if S ⊃ T and S is commutative and contains diagonalisable ele-
ments then we can find a simultaneous eigenbasis for Cn, containing (e1, ... , en). Hence,
this eigenbasis must be equal to the standard basis and S = T .

- B admits a simultaneous eigenvector, namely e1; or, we can say that B fixes a point
(=line) in P(V ). B also has the property that it is solvable: the descending chain
terminates in {e}

B = B0 ⊃ B1
def
= (B0, B0) ⊃ B2

def
= (B1, B1) ⊃ · · · ⊃ Bi

def
= (Bi−1, Bi−1) ⊃ · · ·

where (H, H) = {ghg−1h−1 | g , h ∈ H} is the commutator of H. This is an interesting
(but tedious) exercise.

We can now define certain types of subgroups in GLn (generalising the above fixed subgroups):

- a maximal torus S ⊂ GLn is a commutative, connected, closed subgroup containing
diagonalisable elements, that is contained in no other such group in GLn,

- a Borel subgroup B ′ ⊂ GLn is a maximal solvable, connected, closed subgroup,
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- a parabolic subgroup P ⊂ GLn is a connected, closed subgroup containing some Borel
subgroup B ′; a parabolic containing the standard Borel is called a standard parabolic.

- a unipotent subgroup U ⊂ GLn is a closed subgroup containing unipotent elements:
these are elements u ∈ GLn that have characteristic polynomial χ(t) = ±(t − 1)n,

- the Weyl group of GLn is defined to be W
def
= NG (T )/T : you can check that this is

isomorphic to Sn.

Here are some basic (but nontrivial!) facts:

1. All Borel subgroups are conjugate.

2. NG (B) = B, for any Borel B; NG (P) = P, for any parabolic P.

3. The coset space G/H can be given the structure of a projective variety (so that the
natural quotient map G → G/H is a morphism of algebraic varieties) if and only if H is
parabolic.

4. (Lie-Kolchin) Any Borel subgroup fixes a unique flag V•.

5. (Bruhat decomposition) GLn =
⊔

w∈Sn U−wB,

6. All maximal tori are conjugate (so they have the same dimension).

7. The union of all maximal tori is dense in GLn; ie, the set of al diagonalisable elements in
GLn is dense.

8. Let B be a Borel. Then, B admits a unique maximal normal unipotent subgroup (called
the unipotent radical of B; the quotient B/U is isomorphic to some maximal torus in
B. Hence, we have B ∼= T × U as a variety (but a semidirect product of groups).

9. Any standard parabolic subgroup P ⊂ GLn is of the form

P =



∗d1 ∗ · · · ∗
0 ∗d2 · · · ∗

0 0
. . .

...
∗dr




where d1 + d2 + ... + dr = n and ∗dj represents an invertible dj × dj block.

By (1), (2), (3) we see that GLn/B is a projective variety, called the flag variety of GLn, and

GLn/B = {Borel subgroups of GLn} ↔ Fln = {flags in Cn}.

Moreover, (5) tells us that there are finitely U− orbits on the flag variety, indexed by elements
of the symmetric group. This is precisely the cell decomposition we saw last week.

Some representation theory: We are now going to introduce some of the representation
theory of GLn; a good reference is Goodman-Wallach.

A (rational) representation of GLn is a morphism of algebraic varieties ρ : GLn → GL(W ),
with W a finite dimensional C-vector space, that is also a group homomorphism. If we fix a
basis of W then this becomes a map

ρ : GLn → GLm ; g 7→ ρ(g) = [ρij(g)],
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where the matrix coefficients ρij(g) are elements in the coordinate ring of GLn; hence, they
are polynomials in xij , 1 ≤ i , j ≤ n, and det−1. We will also sometimes call W a representation
of GLn when the map ρ is understood; and simply write g · v , by abuse of notation.

1. The defining representation is the map ρ = id : GLn → GLn.

2. The determinant representation is the representation det : GLn → GL(C) = C×.

3. If (V , ρ1), (W , ρ2) are representations then (V⊕W , ρ) is a representation, where ρ(g)(v , w) =
(ρ1(g)v , ρ2(g)w).

4. If W is a representation then so is
∧k W , where g ·(w1∧· · ·∧wk) = (g ·w1)∧· · ·∧(g ·wk),

and we extend linearly.

5. If W is a representation then so is W ∗: for α ∈ W ∗ we define g · α to be the linear
function

g · α : w 7→ α(g−1 · w).

Let W be a representation of GLn.

- a subspace U ⊂W that is GLn-invariant is called a subrepresentation.

- W is irreducible if the only subrepresentations of W are {0} and W .

- a morphism of representations W , W ′ is a linear map T : W →W ′ such that T (gw) =
gT (w), for every g ∈ GLn, w ∈ W ′. A morphism is an isomorphism if T is an
isomorphism.

Complete irreducibility: let W be a finite dimensional representation of GLn. Then, there
exist irreducible subrepresentations W1, ... , Wr (not necessarily distinct, nor unique) such that
W = W1 ⊕ · · · ⊕Wr .

Complete reducibilty means that in order to understand the (finite dimensional) representations
of GLn we need only determine all of the irreducible representations.

It can be checked that the representations
∧k Cn are irreducible representations, for 1 ≤ k ≤ n.

(Do an example) Note that a basis for
∧k Cn is given by

{eJ | J ⊂ {1, ... , n}, |J| = k}.

Observe that
∧n Cn is just the determinant representation. In fact, the determinant represen-

tation is what constitutes (essentially) the only difference between the representation theory of
GL(V ) and SL(V ).

Highest weight theory and roots: Fix a maximal torus T in GLn - we may as well assume
that this is the standard torus, since all maximal tori are conjugate. The group of characters
of T (sometimes called the weight lattice) is the set of group homomorphisms

X ∗(T )
def
= Homalg. gp(T ,C×),

that are also morphisms of algebraic varieties. We have already seen that X ∗(T ) ∼= Zn: in fact,
we observe that the projections xjj : T → C∗ provide a basis for the free abelian group X ∗(T ).
We will denote these characters χj .
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Fact: for any representation (W , ρ), every element ρ(t) ∈ GL(W ), t ∈ T , is diagonalisable.
Hence, since ρ(T ) ⊂ GL(W ) is a commutative subgroup consisting of diagonalisable elements,
we can find a simultaneous eigenbasis {w1, ... , wm} of W . This means that

t · wi = αi (t)wi ,

where αi : T → C× takes t ∈ T to the eigenvalue αi (t) of the linear operator ρ(t) associated
with the eigenvector wi . Furthermore, since

t · (t ′ · wi ) = (tt ′) · wi ,

we have αi ∈ X ∗(T ). The set {αi} ⊂ X ∗(T ) is called the set of weights of W .

Examples.
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