UC Berkeley Summer Undergraduate Research Program 2015 June 30 Lecture

We introduced the notion of a toric variety: an irreducible variety X is a toric variety if

- there is a dense open $T \subset X$ such that T is isomorphic to a complex torus $\left(\mathbb{C}^{\times}\right)^{n}$,
- the action of T on itself via multiplication $T \times T \rightarrow T$ extends to an action $T \times X \rightarrow X$.

For example, the variety $V=V\left(y^{4}-x^{2} z w\right) \subset \mathbb{C}^{4}$ contains a torus

$$
T=\left\{\left(s, t, u, t^{4} s^{-2} u^{-1}\right) \mid(s, t, u) \in\left(\mathbb{C}^{\times}\right)^{3}\right\} \subset V,
$$

and this extends to an action

$$
(s, t, u) \cdot(x, y, z, w) \stackrel{\text { def }}{=}\left(s x, t y, u z, t^{4} s^{-2} u^{-1} w\right) .
$$

We observe that $T=V-V(x y z w)$, or that $T=V \cap U(y)$, where $U(y)=\mathbb{C}^{4}-V(y)$; hence, T is open in V.

We have the following orbits:

- the dense $3-d$ orbit T,
- the 2 -d orbits $T \cdot(0,0, z, w)$, with $z \neq 0, w \neq 0, T \cdot(x, 0,0, w)$, with $x \neq 0, w \neq 0$, $T \cdot(x, 0, z, 0)$, with $x \neq 0, z \neq 0$,
- the 1-d orbits $T \cdot(x, 0,0,0), T \cdot(0,0, z, 0), T \cdot(0,0,0, w)$,
- the (unique, closed) 0 -d orbit $T \cdot(0,0,0,0)$.

We will see that this orbit structure is encoded in a (strongly) convex polyhedral cone, from which we can reconstruct V.

Recall that a convex polyhedral cone was a subset $\sigma \subset \mathbb{R}^{n}$ of the form

$$
\sigma=\operatorname{cone}(S)=\sum \mathbb{R}_{\geq 0} v_{i}, \quad S=\left\{v_{1}, \ldots, v_{r}\right\}
$$

We say that σ is strongly convex if σ contains no positive dimensional linear subspace. This is equivalent to $\{0\}$ being a face of σ, or that $\operatorname{dim} \sigma^{\vee}=n$.

For strongly convex polyhedral cones there is a particularly nice way to obtain generators of σ : recall that a face of σ is a subset $\tau=H_{u} \cap \sigma$, where $H_{u}=\operatorname{ker} u, u \in\left(\mathbb{R}^{n}\right)^{*}$, and that faces are themselves convex polyhedral cones (in fact, they are strongly convex). We define an edge (or ray) of σ to be a 1 -dimensional face of σ. It is not too hard to see that a generating set of σ can be chosen from (nonzero) elements in edges, and that such a generating set is minimal.
We say that a cone is rational if $\sigma=\operatorname{cone}(S)$, for $S \subset \mathbb{Z}^{n} \subset \mathbb{R}^{n}$. Hence, we see that in a strongly convex rational polyhedral cone we can find a unique minimal generating set.
We now come to an important construction: given a (strongly) convex rational polyhedral cone $\sigma \subset N_{\mathbb{R}}$, we define

$$
S_{\sigma}=\sigma^{\vee} \cap M
$$

For example, if $\sigma=\mathbb{R}_{\geq 0}\left[\begin{array}{c}-1 \\ 2\end{array}\right]+\mathbb{R}_{\geq 0}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then

$$
S_{\sigma}=\mathbb{Z}_{\geq 0}\left[\begin{array}{lll}
2 & 1
\end{array}\right]+\mathbb{Z}_{\geq 0}\left[\begin{array}{ll}
1 & 1
\end{array}\right]+\mathbb{Z}_{\geq 0}\left[\begin{array}{lll}
0 & 1
\end{array}\right]
$$

In particular, we see that S_{σ} is a finitely generated semigroup: in fact, this will always be the case.
Gordan's Lemma: if $\sigma \subset N_{\mathbb{R}}$ is a rational polyhedral cone then $S_{\sigma}=\sigma^{\vee} \cap M$ is finitely generated semigroup (monoid).
Hence, the semigroup algebra $\mathbb{C}\left[S_{\sigma}\right]$ (= subalgebra of the group algebra of M) is finitely generated and we can consider the corresponding affine variety $\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$.

In the above example we get

$$
\mathbb{C}\left[x^{ \pm}, y^{ \pm}\right] \supset \mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[x^{2} y, x y, y\right] \cong \mathbb{C}[u, v, w] /\left(v^{2}-u w\right)
$$

and we see that $\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)=V\left(v^{2}-u w\right) \subset \mathbb{C}^{3}$, with the action of the torus $T=\left(\mathbb{C}^{\times}\right)^{2}$,

$$
(x, y) \cdot(u, v, w) \stackrel{\text { def }}{=}\left(x^{2} y u, x y v, y w\right)
$$

We see T sitting inside V via the isomorphism

$$
(x, y) \mapsto\left(x^{2} y, x y, y\right), \quad(u, v, w) \mapsto\left(v w^{-1}, w\right)
$$

Given a face $\tau \subset \sigma$ we get an orbit of T on X as follows: if $\tau=\mathbb{R}_{\geq 0}\left[\begin{array}{c}-1 \\ 2\end{array}\right]=H_{[21]} \cap \sigma$, then consider the projection

$$
S_{\sigma} \rightarrow S_{\sigma}(\tau) \stackrel{\text { def }}{=} \sigma^{\vee} \cap \tau^{\perp} \cap M=\mathbb{Z}_{\geq 0}\left[\begin{array}{lll}
2 & 1
\end{array}\right] ; a[21]+b\left[\begin{array}{lll}
1 & 1
\end{array}\right]+c\left[\begin{array}{ll}
0 & 1
\end{array} \mapsto a\left[\begin{array}{ll}
2 & 1
\end{array}\right]\right.
$$

which gives rise to the surjective morphism of semigroups algebras

$$
\mathbb{C}\left[S_{\sigma}\right] \rightarrow \mathbb{C}\left[S_{\sigma}(\tau)\right]
$$

which in turn corresponds to the morphism of varieties

$$
V(v, w) \cap \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right) \subset \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)
$$

The subvariety on the left hand side above is an orbit closure: it is the union of the orbit $T \cdot(u, 0,0) \subset \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$ and $T \cdot(0,0,0) \subset \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$.
Observe that $S_{\sigma}(\sigma)=\sigma^{\vee} \cap \sigma^{\perp} \cap M=\{0\} \subset M$, because $\operatorname{dim} \sigma=2$, so that we have an embedding of varieties

$$
V(u, v, w) \cap \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)=\{(0,0,0)\} \rightarrow \operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)
$$

Hence, to the face $\tau \subset \sigma$ we get an orbit

$$
\mathcal{O}_{\tau}=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}(\tau)\right]\right)-\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}(\sigma)\right]\right)
$$

In general, we have

$$
\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}(\tau)\right]\right)=\bigsqcup_{\tau \prec \gamma} \mathcal{O}_{\gamma}
$$

where we have partial ordering on faces

$$
\tau \prec \gamma \Leftrightarrow \tau \subset \gamma
$$

There is an order-reversing correspondence between faces of σ and orbits in $\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)$; denote that orbit corresponding to the face τ by \mathcal{O}_{τ}. Moreover, $\mathcal{O}_{\tau} \subset \overline{\mathcal{O}_{\tau^{\prime}}}$ if and only if $\tau^{\prime} \prec \tau$.

