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Today we will begin talking about algebraic geometry, with the ultimate goal of playing with
toric varieties and concrete examples.

There are many, many references for algebraic geometry and we will mostly use the Introduction
to Cox’s ’Toric Varieties’ notes. However, more complete introductions (at the undergraduate
level) are

1. M. Reid Undergraduate Algebraic Geometry (available online at Reid’s website)

2. Shafarevich Basic Algebraic Geometry

To be able to study algebraic geometry effectively you need to have taken/concurrently take a
strong commutative algebra class. My thoughts are the following:

commutative algebra is to algebraic geometry as calculus is to differential geometry

An affine algebraic variety is a subset V = V (A) ⊂ Cn defined by the vanishing of some

collection of polynomials A ⊂ C[X ]
def
= C[x1, ... , xn]. There are some basic observations:

1. V = {x ∈ Cn | f (x) = 0, for every f ∈ (A)}, where (A) is the ideal generated by A

2. Hilbert’s Basis Theorem implies that we can always describe V as the zero locus of finitely
many polynomials (simply take a finite generating set for (A)). As such, we may also
sometimes write V = V (f1, ... , fr ), where fi generate (A).

Given a subset X ⊂ Cn, we define

IX
def
= {f ∈ C[x1, ... , xn] | f (x) = 0, for every x ∈ X}.

So, IX consists of all polynomial functions on Cn that vanish on X ; it’s an ideal in C[X ].

We can think of I and V as defining functions

V : {ideals in C[X ]} → {subsets of Cn}, I : {subsets of Cn} → {ideals in C[X ]}.

For example, we have

1. V (x2) = {(0, y) | y ∈ C} ⊂ C2,

2. V (f ) = {x ∈ Cn | f (x) = 0} ⊂ Cn,

3. V (f , g) = {x ∈ Cn | f (x) = 0 and g(x) = 0} = V (f ) ∩ V (g),

4. V (fg) = {x ∈ Cn | f (x) = 0 or g(x) = 0} = V (f ) ∪ V (g),

5. IZ = C[x ],

6. I(0,0) = (x , y),

7. IZ2 = C[x , y ],

8. V (C[x , y ]) = ∅,

9. V (0) = Cn.
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Check:

- V (IX ) = X , for any affine variety X ⊂ Cn;

- IX ⊂ IX ′ =⇒ X ⊃ X ′;

- X ⊂ X ′ =⇒ IX ⊃ IX ′

Note that if X = V (x2) ⊂ C, then IX = (x) ) (x2).

The fundamental relationship between V and I is given by Hilbert’s Nullstellensatz: let
I ⊂ C[x1, ... , xn], X = V (I ). Then, IX =

√
I = {f ∈ C[X ] | f m ∈ I}, that radical of I . In

particular, points (a1, ... , an) ∈ Cn correspond to maximal ideals (x1− a1, ... , xn− an) ⊂ C[X ];
this says, moreover, that every maximal ideal is of this form.

Given an affine variety X ⊂ Cn, its coordinate ring is AX
def
= C[X ]/IX . Elements of AX should

be thought of as polynomial functions on Cn that restrict to give equal functions on X . There
is a one-to-one correspondence between points in X and maximal ideals of AX .

A subvariety of the affine variety X is a subset V ⊂ X , where V = V (I ) for some I ⊃ IX .

A morphism of affine varieties F : Cn ⊃ X → Y ⊂ Cm is a map

F = (f1(x1, ... , xn), ... , fm(x1, ... , xn)).

Any morphism F : X → Y of affine varieties gives rise to a (well-defined!) map

F ∗ : AY → AX ; f 7→ F ∗(f ) = f ◦ F .

We say that X and Y are isomorphic if and only if there exists morphisms F : X → Y and
G : Y → X that are inverse to each other.

Fact: X is isomorphic to Y (both affine varieties) if and only if AX
∼= AY (as C-

algebras).

1. We have X = V (y − x2) is isomorphic to C: indeed we have AX = C[x , y ]/(y − x2),
AC = C[u] and we have an isomorphism

α : AY → AX ; f (u) 7→ f (x), β : AX → AY ; f (x , y) 7→ f (u, u2).

2. The map F : V (y2 − x3) → C ; (x , y) 7→ x is a bijective morphism, but is not an
isomorphism: the inverse function (u 7→ (u, u3/2)) is not a morphism.

More generally, we say that a subset V ⊂ Cn is an affine variety if it is isomorphic to some
affine variety.

In fact, any finitely generated C-algebra A without nilpotent elements (ie f n = 0 =⇒
f = 0) is of the form A = AX for some affine variety X . Given such a C-algebra A we
will write (by abuse of notation/meaning) X = Spec(A), for the variety A for which A is its
coordinate ring.

Let X be an affine variety. The Zariski topology on X is the topology with closed sets
precisely the subsets of the form V (I ) for some ideal I ⊂ AX . The complements of subsets of
the form V (I ) are called open. The Zariski topology is weird and does not capture any of the
usual topological information: for example, it is almost never Hausdorff.

2



Given a subset S ⊂ X we then the Zariski closure of S is the smallest subvariety of X
that contains S ; this is the closure S with respect to the Zariski topology. In fact, we have
S = V (IS).

Essentially, the algebraic geometry of affine varieties is completely captured by coordinate rings;
asking a question about an affine variety is equivalent to asking a question about its coordinate
ring.

Projective Geometry: define n-dimensional projective space to be

Pn def
=

(
Cn+1 − {0}

)
/ ∼,

where u ∼ v if and only if there exists λ 6= 0 such that u = λv . Hence,

Pn = {lines in Cn+1} = Gr(1, n + 1).

We will denote the equivalence class of v = (v0, ... , vn) by [v ] or [v0 : ... : vn]. We call the
vi homogeneous coordinates - they are not well defined functions on Pn; hence, neither are
polynomials!

However, if f ∈ C[V ]
def
= C[v0, ... , vn] is homogeneous of degree d , and we define f ([v ]) = 0,

then asking whether f ([v ]) = 0 is well-defined: if [u] = [v ] then u = λv , for some nonzero λ,
and

f ([u]) = f (u) = f (λv) = λd f (v) = 0, assuming f (v) = 0.

Hence, we can talk about the zero locus of a collection of homogeneous polynomials
f1, ... , fr ∈ C[V ]. Define

V (f1, ... , fr ) = {[v ] | fi ([v ]) = 0, for each i} ⊂ Pn.

Such a subset V as above is called a projective variety. A subvariety of V is a subset
W ⊂ V defined by the vanishing of (the restriction to V of) some homogeneous polynomials:
we declare the subvarieties of V to be closed to obtain the Zariski topology on V .

If I ⊂ C[V ] is a homogeneous ideal (ie generated by homogeneous polynomials) then we can
define

V (I )
def
= {[v ] | f ([v ]) = 0, for every f ∈ I}.

Similarly, given a projective variety V ⊂ Pn we get a homogeneous (check!) ideal

IX
def
= {f ∈ C[V ] | f ([v ]) = 0, for every [v ] ∈ X}.

The projective nullstellensatz now states: let I ⊂ C[V ] be a homogeneous ideal. Then,

V (I ) = ∅↔ I ⊃ (v0, ... , vn)m, for some m ≥ 0,

and
V (I ) 6= ∅ =⇒ IV (I ) =

√
I .

Given a projective variety V ⊂ Pn we define its homogeneous coordinate ring (with respect
to the embedding V ⊂ Pn) to be BV = C[V ]/IV . Note that we have emphasized the
dependence on realising V as a subvariety of Pn.

A morphism of projective varieties F : Pn ⊃ U → V ⊂ Pm, [u] 7→ (f0([u]), ... , fm([u])), with
each of the f ’s being homogeneous of the same degree, can only be defined everywhere on U
if U ∩ V (f1, ... , fm) = ∅.

3



Important Fact: if F : U → V is a morphism of projective varieties then F (U) is a projective
subvariety of V .

There is a major difference between affine and projective algebraic geometry: a projective variety
is not uniquely determined by its coordinate ring.

4


