UC Berkeley Summer Undergraduate Research Program 2015 June 23-24

This is an exposition of the paper: Kogan-Miller 'Toric Degenerations of Schubert varieties and Gelfand-Tsetlin polytopes', Adv. Math 193 (2005) p1-17.

By considering the Plucker algebra \mathcal{P} and exhibiting a SAGBI basis for \mathcal{P} (consisting of Plucker coordinates), we obtained a toric degeneration of the Flag variety (algebraically, at least).

In Kogan-Miller they construct the same toric degeneration (ie, the special fibre is the toric variety coming from the Gelfand-Tsetlin polytope). Moreover, their construction allows to see what happens to certain subvarieties of the flag variety under this degeneration - these are the Schubert varieties (=closures of Schubert cells), and are important in understanding the topology of flag varieties.

One of the projects for this summer is to try and perform a similar construction as in KoganMiller for a toric degeneration of a Grassmannian.
Again, we will focus on an example in order to highlight the main points.
Let $M=M_{3}(\mathbb{C})$, the set of 3×3 matrices, $G=G_{3}, B \subset G$ the set of lower triangular matrices in G.

There is an action of $G^{3}=G \times G \times G$ on M by column-wise multiplication - this means that the usual action of G on M is obtained via restriction to the diagonal subgroup of G^{3}. Namely, if $g=\left(g_{1}, g_{2}, g_{3}\right) \in G^{3}$ and $m=\left[v_{1} v_{2} v_{3}\right] \in M$ then we define

$$
g \cdot m \stackrel{\text { def }}{=}\left[g_{1} v_{1} g_{2} v_{2} g_{3} v_{3}\right] .
$$

Denote by $\underline{B} \subset G^{3}$ the image of B under the diagonal embedding of G in G^{3} - so elements of \underline{B} are of the form (b, b, b), for $b \in B$.

Fix the following (generically arbitrary) 3×3 matrix

$$
W=\left[w_{i j}\right]=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

There is a homomorphism from $\mathbb{C}^{*}=\{z \in \mathbb{C} \mid z \neq 0\}$, the multiplicative group of nonzero complex numbers, into G^{3}

$$
T: \mathbb{C}^{*} \rightarrow G^{3} ; z \mapsto\left(Z_{1}, Z_{2}, Z_{3}\right),
$$

where $Z_{j}=\operatorname{diag}\left(z^{w_{1 j}}, z^{w_{2 j}}, z^{w_{3 j}}\right)$. Denote $T_{W} \stackrel{\text { def }}{=} \operatorname{im} T \subset G^{3}$, and if $z \in \mathbb{C}^{*}$ we will write $\tilde{z} \stackrel{\text { def }}{=} T(z) \in T_{W}$

Exercise: is T_{W} a subgroup of \underline{B} ? Write down some elements in T_{W}.
Define a family of subgroups $B^{*} \subset B^{3} \times \mathbb{C}^{*}$ as follows:

$$
B^{*} \stackrel{\text { def }}{=}\left\{\left(\tilde{z}^{-1} b \tilde{z}, z\right) \mid b \in \underline{B}, z \in \mathbb{C}^{*}\right\} .
$$

The fibre over $z \in \mathbb{C}^{*}$ is denoted $B(z) \cong \underline{B} \cong B$. (Show this last group isomorphism.)

Exercise: check that if $b=\left(b_{1}, b_{2}, b_{3}\right) \in B^{3}$ then $\tilde{z}^{-1} b \tilde{z}$ is the element of B^{3} obtained from multiplying entries in b by the sequence

$$
\left[\begin{array}{ccc}
1 & & \tag{*}\\
z^{2} & 1 & \\
z^{3} & z & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
z & 1 & \\
z & 1 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
1 & 1 & \\
1 & 1 & 1
\end{array}\right] .
$$

For example, if

$$
b=\left[\begin{array}{ccc}
1 & & \\
-2 & 2 & \\
1 & 1 & 1
\end{array}\right],
$$

then

$$
\tilde{z}^{-1}(b, b, b) \tilde{z}=\left(\left[\begin{array}{ccc}
1 & & \\
-2 z^{2} & 2 & \\
z^{3} & z & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & & \\
-2 z & 2 & \\
z & 1 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & & \\
-2 & 2 & \\
1 & 1 & 1
\end{array}\right]\right) \in B(z)
$$

Note that each power of z appearing in the sequence $(*)$ is positive; hence, we can also extend our family 'over 0 ', in the sense that we can set

$$
B(0)=\left\{\left(\left(b_{1}, b_{2}, b_{3}\right), 0\right)\right\}
$$

where b_{j} obtained from b_{3} by setting to 0 all entries in columns $1, \ldots, 3-j$ strictly below main diagonal. That is, we are considering $\lim _{z \rightarrow 0} B(z)=B(0)$.
For example, we have

$$
\left(\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& 1 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & & \\
-2 & 2 & \\
1 & 1 & 1
\end{array}\right]\right) \in B(0)
$$

Denote $p: B^{*} \rightarrow \mathbb{C}$ the resulting projection.
Lemma: there is an isomorphism of 'families of groups' $B^{*} \cong B \times \mathbb{C}$ in the following sense - there is a function $f: B \times \mathbb{C} \rightarrow B^{*}$ such that $p \circ f=\pi$, where π is the canonical projection to \mathbb{C}, and f restricts to group isomorphisms on fibres over \mathbb{C}.
Proof: Note that $B \cong \underline{B}$, sending $b \mapsto \underline{b}=(b, b, b)$. For $0 \neq z \in \mathbb{C}$ we define

$$
f(b, z)=\left(\tilde{z}^{-1} \underline{b} \tilde{z}, z\right) \in B^{*} .
$$

If $z=0$ then we denote

$$
f(b, 0)=\left(\left(b_{1}, b_{2}, b\right), 0\right) \in B(0),
$$

where b_{i} is obtained from b by setting to 0 all entries below main diagonal in columns $1, \ldots, 3-i$ (as above). (Check this is a group homomorphism on fibres: this means that you fix $z \in \mathbb{C}$ and check that $f\left(b b^{\prime}, z\right)=f(b, z) f\left(b^{\prime}, z\right)$, where the group operation on the right comes from the group operation on G^{3}.

In fact, we have

$$
f\left(\left[\begin{array}{lll}
a_{11} & & \\
a_{21} & a_{22} & \\
a_{31} & a_{32} & a_{33}
\end{array}\right], z\right)=\left(\left[\begin{array}{ccc}
a_{11} & & \\
a_{21} z^{2} & a_{22} & \\
a_{31} z^{3} & a_{32} z & a_{33}
\end{array}\right],\left[\begin{array}{ccc}
a_{11} & & \\
a_{21} z & a_{22} & \\
a_{31} z & a_{32} & a_{33}
\end{array}\right],\left[\begin{array}{lll}
a_{11} & \\
a_{21} & a_{22} & \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\right)
$$

We consider B acting on $M \times \mathbb{C}$ by identifying $B \times \mathbb{C}$ with B^{*} through the above isomorphism and consider B^{*} acting 'fibrewise' on $M \times \mathbb{C}$: ie we define an action

$$
b *(m, z) \stackrel{\text { def }}{=}\left(\left(\tilde{z}^{-1} \underline{b} \tilde{z}\right) \cdot m, z\right)
$$

For example, if

$$
b=\left[\begin{array}{ccc}
1 & & \\
-2 & 2 & \\
1 & 1 & 1
\end{array}\right],
$$

and $X=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right]$ then

$$
\begin{aligned}
b *(X, z) & =\left(\left[\left[\begin{array}{ccc}
1 & & \\
-2 z^{2} & 2 & \\
z^{3} & z & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\left[\begin{array}{ccc}
1 & & \\
-2 z & 2 & \\
z & 1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\left[\begin{array}{ccc}
1 & & \\
-2 & 2 & \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right], z\right) \\
& =\left(\left[\begin{array}{ccc}
1 & 1 & 0 \\
-2 z^{2}+2 & -2 z & 0 \\
z^{3}+z & z+1 & 1
\end{array}\right], z\right)
\end{aligned}
$$

Remark: When $z=0$, we have that the action of B on $M \times\{0\}$ commutes with the action of the subgroup

$$
S=\left\{\left(\left[\begin{array}{lll}
a & & \\
& b & \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
c & & \\
& 1 & \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]\right) \in G^{3}\right\} \subset G^{3}
$$

on M. We will denote by $\bar{t} \in S$ the sequence

$$
\bar{z} \stackrel{\text { def }}{=}\left(\left[\begin{array}{lll}
z^{3} & & \\
& z & \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
z & & \\
& 1 & \\
& & 1
\end{array}\right],\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 1
\end{array}\right]\right) \in S .
$$

We are now going to consider a 'family of Plucker coordinates': for $J=\left\{j_{1}, \ldots, j_{k}\right\} \subset\{1,2,3\}$, $k=1,2$, 3 , we denote

$$
w_{J}=\sum_{i=1}^{2} w_{i, 4-j_{i}}
$$

where $W=\left[w_{i j}\right]$ is as above. For example, $w_{12}=0+0, w_{13}=0+1, w_{23}=1+1$.
We are going to define 'Plucker coordinates on the family' $M \times \mathbb{C}$ - these will be polynomials $q_{J}(\underline{x}, z) \in \mathbb{C}\left[x_{11}, x_{12}, \ldots, x_{32}, x_{33}, z\right]$ (think of the variable z as the degnerating parameter) such that, if we fix $z=z_{0}$, the polynomial $q_{J}\left(\underline{x}, z_{0}\right)$ is U-invariant by restricting the $*$-action of B to

$$
U=\left\{\left[\begin{array}{lll}
1 & & \\
* & 1 & \\
* & * & 1
\end{array}\right]\right\} \subset B
$$

This means that $q_{J}(u *(m, z))=q_{J}(m, z)$, for any $u \in U$.
For $J \subset\{1,2,3\}$, we define

$$
q_{J}(\underline{x}, z)=z^{-w_{J}} \Delta_{J}(\bar{z} \cdot X) .
$$

For example,

$$
q_{12}(\underline{x}, z)=z^{0} \Delta_{12}(\bar{z} \cdot X)=\Delta_{12}\left(\left[\begin{array}{ccc}
z^{3} x_{11} & z x_{12} & x_{13} \\
z x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]\right)=z^{3} x_{11} x_{22}-z^{2} x_{12} x_{21} .
$$

Important Theorem: The polynomials q_{J} generate the $\mathbb{C}[z]$-algebra of U-invariant functions inside $\mathbb{C}[\underline{x}, z]$.

