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This is an exposition of the paper: Kogan-Miller ’Toric Degenerations of Schubert varieties and
Gelfand-Tsetlin polytopes’, Adv. Math 193 (2005) p1-17.

By considering the Plucker algebra P and exhibiting a SAGBI basis for P (consisting of Plucker
coordinates), we obtained a toric degeneration of the Flag variety (algebraically, at least).

In Kogan-Miller they construct the same toric degeneration (ie, the special fibre is the toric
variety coming from the Gelfand-Tsetlin polytope). Moreover, their construction allows to see
what happens to certain subvarieties of the flag variety under this degeneration - these are
the Schubert varieties (=closures of Schubert cells), and are important in understanding the
topology of flag varieties.

One of the projects for this summer is to try and perform a similar construction as in Kogan-
Miller for a toric degeneration of a Grassmannian.

Again, we will focus on an example in order to highlight the main points.

Let M = M3(C), the set of 3 × 3 matrices, G = GL3, B ⊂ G the set of lower triangular
matrices in G .

There is an action of G 3 = G × G × G on M by column-wise multiplication - this means that
the usual action of G on M is obtained via restriction to the diagonal subgroup of G 3. Namely,
if g = (g1, g2, g3) ∈ G 3 and m = [v1 v2 v3] ∈ M then we define

g ·m def
= [g1v1 g2v2 g3v3].

Denote by B ⊂ G 3 the image of B under the diagonal embedding of G in G 3 - so elements of
B are of the form (b, b, b), for b ∈ B.

Fix the following (generically arbitrary) 3× 3 matrix

W = [wij ] =

3 1 0
1 0 0
0 0 0

 .

There is a homomorphism from C∗ = {z ∈ C | z 6= 0}, the multiplicative group of nonzero
complex numbers, into G 3

T : C∗ → G 3 ; z 7→ (Z1,Z2,Z3),

where Zj = diag(zw1j , zw2j , zw3j ). Denote TW
def
= imT ⊂ G 3, and if z ∈ C∗ we will write

z̃
def
= T (z) ∈ TW

Exercise: is TW a subgroup of B? Write down some elements in TW .

Define a family of subgroups B∗ ⊂ B3 × C∗ as follows:

B∗
def
= {(z̃−1bz̃ , z) | b ∈ B, z ∈ C∗}.

The fibre over z ∈ C∗ is denoted B(z) ∼= B ∼= B. (Show this last group isomorphism.)
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Exercise: check that if b = (b1, b2, b3) ∈ B3 then z̃−1bz̃ is the element of B3 obtained
from multiplying entries in b by the sequence 1

z2 1
z3 z 1

 ,

1
z 1
z 1 1

 ,

1
1 1
1 1 1

 . (∗)

For example, if

b =

 1
−2 2
1 1 1

 ,

then

z̃−1(b, b, b)z̃ =

 1
−2z2 2
z3 z 1

 ,

 1
−2z 2
z 1 1

 ,

 1
−2 2
1 1 1

 ∈ B(z)

Note that each power of z appearing in the sequence (∗) is positive; hence, we can also extend
our family ‘over 0’, in the sense that we can set

B(0) = {((b1, b2, b3), 0)},

where bj obtained from b3 by setting to 0 all entries in columns 1, ... , 3− j strictly below main
diagonal. That is, we are considering limz→0 B(z) = B(0).

For example, we have1
2

1

 ,

1
2
1 1

 ,

 1
−2 2
1 1 1

 ∈ B(0)

Denote p : B∗ → C the resulting projection.

Lemma: there is an isomorphism of ‘families of groups’ B∗ ∼= B ×C in the following
sense - there is a function f : B ×C→ B∗ such that p ◦ f = π, where π is the canonical
projection to C, and f restricts to group isomorphisms on fibres over C.

Proof: Note that B ∼= B, sending b 7→ b = (b, b, b). For 0 6= z ∈ C we define

f (b, z) = (z̃−1bz̃ , z) ∈ B∗.

If z = 0 then we denote
f (b, 0) = ((b1, b2, b), 0) ∈ B(0),

where bi is obtained from b by setting to 0 all entries below main diagonal in columns 1, ... , 3−i
(as above). (Check this is a group homomorphism on fibres: this means that you fix
z ∈ C and check that f (bb′, z) = f (b, z)f (b′, z), where the group operation on the right
comes from the group operation on G 3.

In fact, we have

f

a11a21 a22
a31 a32 a33

 , z

 =

 a11
a21z

2 a22
a31z

3 a32z a33

 ,

 a11
a21z a22
a31z a32 a33

 ,

a11a21 a22
a31 a32 a33


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We consider B acting on M ×C by identifying B ×C with B∗ through the above isomorphism
and consider B∗ acting ‘fibrewise’ on M × C: ie we define an action

b ∗ (m, z)
def
= ((z̃−1bz̃) ·m, z)

.
For example, if

b =

 1
−2 2
1 1 1

 ,

and X =

1 1 0
1 0 0
0 1 1

 then

b ∗ (X , z) =

 1
−2z2 2
z3 z 1

1
1
0

  1
−2z 2
z 1 1

1
0
1

  1
−2 2
1 1 1

0
0
1

 , z


=

 1 1 0
−2z2 + 2 −2z 0
z3 + z z + 1 1

 , z


Remark: When z = 0, we have that the action of B on M × {0} commutes with the action
of the subgroup

S =


a b

1

 ,

c 1
1

 ,

1
1

1

 ∈ G 3

 ⊂ G 3

on M. We will denote by t ∈ S the sequence

z
def
=

z3 z
1

 ,

z 1
1

 ,

1
1

1

 ∈ S .

We are now going to consider a ‘family of Plucker coordinates’: for J = {j1, ... , jk} ⊂ {1, 2, 3},
k = 1, 2, 3, we denote

wJ =
2∑

i=1

wi ,4−ji ,

where W = [wij ] is as above. For example, w12 = 0 + 0, w13 = 0 + 1, w23 = 1 + 1.

We are going to define ‘Plucker coordinates on the family’ M × C - these will be polynomials
qJ(x , z) ∈ C[x11, x12, ... , x32, x33, z ] (think of the variable z as the degnerating parameter) such
that, if we fix z = z0, the polynomial qJ(x , z0) is U-invariant by restricting the ∗-action of B
to

U =


1
∗ 1
∗ ∗ 1

 ⊂ B.

This means that qJ(u ∗ (m, z)) = qJ(m, z), for any u ∈ U.

For J ⊂ {1, 2, 3}, we define
qJ(x , z) = z−wJ ∆J(z · X ).
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For example,

q12(x , z) = z0∆12(z · X ) = ∆12

z3x11 zx12 x13
zx21 x22 x23
x31 x32 x33

 = z3x11x22 − z2x12x21.

Important Theorem: The polynomials qJ generate the C[z ]-algebra of
U-invariant functions inside C[x , z ].
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