UC Berkeley Summer Undergraduate Research Program 2015 June 21

Today we will discuss: complete flags, Plucker coordinates, Gelfand-Tsetlin polytopes.

In order to illustrate what's to come we will focus on an example and highlight some interesting features; all of what follows can discussed in general terms. See Miller-Sturmfels 'Combinatorial Commutative Algebra', Ch. 14 for more details. (*Note: this reference can be hard to read in places. I have extracted the essential results.*)

A complete flag in \mathbb{C}^3 (or simply a flag) is a sequence of subspace $\{0\} = V_0 \subset V_1 \subset V_2 \subset V_3 = \mathbb{C}^3$, such that dim $V_i = i$. We denote the set of all flags in \mathbb{C}^3 by Fl_3 , and will often write V_{\bullet} when considering a single flag.

So, really, a flag is just a pair (line, plane), with the line lying in the plane. We want to consider a 'nice' algebraic description of Fl₃; namely, we want some 'coordinates' that can distinguish different flags.

Suppose that $V_{\bullet} \in \mathsf{Fl}_3$ is a flag. Then, V_1 is determined by specfiying, up to nonzero scalar multiplication, a nonzero vector of V_1 . Determining V_2 requires some more consideration. Take any basis (v_1, v_2) of V_2 . Then, basic linear algebra states that

$$V_2 = \operatorname{row}\left(\begin{bmatrix} v_1^t \\ v_2^t \end{bmatrix}\right) = \operatorname{row} U,$$

where U is the reduced echelon form of the matrix $A = \begin{bmatrix} v_1^t \\ v_2^t \end{bmatrix}$; that is, row operations preserve the row space.

Hence, two 2-d subspaces of \mathbb{C}^3 , V_2 and V'_2 , are equal precisely if the matrices A and A' we obtain after choosing a basis for each are row-equivalent.

This sounds like we've solved our problem (which we have, kind of). However, row-reduction is a pain in general (especially if we want to generalise our approach to flags in \mathbb{C}^n). As is the case in mathematics, let's make things harder to make them easier in the long run.

Notice that the possible reduced echelon forms of A are

[1	0	*		[1	*	0		0	1	0	
0	1	*	,	0	0	1	,	0	0	1	•

In each case we see that at least one of the 2 \times 2-minors is nonzero; in fact, this is true in general - let A be a 2 \times 3 matrix. Then, dim row(A) = 2 if and only if at least one of the 2 \times 2 minors is nonzero.

Denote the minors of a 2 × 3 generic matrix Δ_{12} , Δ_{13} , Δ_{23} ; these are polynomial functions on the space of 2 × 3 matrices in the variables x_{ij} . Hence, for any $A = [a_{ij}] \in M_{2\times 3}(\mathbb{C})$,

$$\Delta_{12}(A) = a_{12}a_{22} - a_{21}a_{12},$$
 etc

In fact, the minors completely determine the row span of a full-rank 2×3 matrix in the following sense: row(A) = row(A') if and only if there exists $c \neq 0$ such that $(\Delta_{12}(A), \Delta_{13}(A), \Delta_{23}(A)) = c(\Delta_{12}(A'), \Delta_{13}(A'), \Delta_{23}(A'))$.

Let's see how this works: suppose that there's nonzero c as in the statement. As A and A' are full rank we must have that one of the minors is nonzero. Suppose that $\Delta_{12}(A) \neq 0$ (so

that $\Delta_{12}(A') \neq 0$: we want to show that row(A) = row(A'). Choose bases (v_1, v_2) (resp. (v'_1, v'_2)) of row(A) (resp. row(A')). We must show that the following systems of equations are consistent

$$A^t x = v_1', \quad A^t x = v_2'.$$

Suppose that

$$A^t = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix},$$

and *B* is the (2×2) inverse of $\begin{bmatrix} a & d \\ b & e \end{bmatrix}$.

We want to row-reduce $[A^t : (A')^t]$: we find

$$\begin{bmatrix} B & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A^t : (A')^t \end{bmatrix} = \begin{bmatrix} 1 & 0 & : & a' & d' \\ 0 & 1 & : & b' & e' \\ c & f & : & c' & f' \end{bmatrix}$$

The system we were solving is consistent if (c, f) = (0, 0) implies (c', f') = (0, 0). Suppose that (c, f) = (0, 0). Then, $\Delta_{13}(A) = \Delta_{23}(A) = 0$, so that $\Delta_{13}(A') = \Delta_{23}(A') = 0$. Hence, a'f' = d'c' and b'f' = c'e'. As $\Delta_{12}(A') \neq 0$ this implies that $(a', d') \neq (0, 0)$ (why?). If $a' \neq 0$ then f' = d'c'/a' and

$$b'c'd'/a'=c'e'\implies 0=rac{c'}{a'}(b'd'-a'e')\implies 0=\Delta_{12}(A'),$$

which is a contradiction. Similar arguments (assuming $\Delta_{13}(A) \neq 0$, $\Delta_{23}(A) \neq 0$) give the result.

Hence, up to nonzero scalar multiplication, a 2-d subspace in \mathbb{C}^3 is determined by (the nonzero vector) ($\Delta_{12}, \Delta_{13}, \Delta_{23}$). Hence, we've shown that there is an injective function

$$\{2 ext{-d subspaces in } \mathbb{C}^3\} o \mathbb{C}^3/\sim ; \ V_2\mapsto [\Delta_{ii}(A)],$$

where $u \sim v$ if there exists nonzero λ such that $u = \lambda v$. This is a particular example of a more general result that we will see later (**the Plucker embedding of a Grassmannian**).

Denote $\Delta_1 = x_{11}$, $\Delta_2 = x_{12}$, $\Delta_3 = x_{13}$.

Consider a flag V_{\bullet} . As above, we can use a 2 × 3 matrix A to write down V_{\bullet} in more concrete terms: the first row of A spans V_1 and row $(A) = V_2$. Moreover, up to nonzero scalar multiplication, we find an injective function

$$\mathsf{Fl}_3 o \mathbb{C}^3/\sim imes \mathbb{C}^3/\sim ; \ V_ullet \mapsto ([\Delta_i(A)], [\Delta_{ij}(A)])$$

and we observe that the 'coordinates' Δ_i , Δ_{jk} are related to each other (they both come from a generic 2 × 3 matrix). There is exactly one relation (*Not so easy to see this!*) among the Δ 's:

$$\Delta_1 \Delta_{23} - \Delta_2 \Delta_{13} + \Delta_3 \Delta_{12} = 0.$$

Edit 6/22: there were some great observations today about 'orthogonal' lines etc. so I though I would include them here.

Remark: The above relation looks very much like a 'dot product'. In fact, there is a sense in which this is true: the subspace V_2 has a 1-d annihilator $V_2^{\perp} \subset (\mathbb{C}^3)^*$. Recall that the annihilator of a subspace U is

$$U^{\perp} = \{ \alpha \in (\mathbb{C}^3)^* \mid \alpha(u) = 0, \text{ for every } u \in U \}.$$

The Plucker coordinates can be consider as defining a function from $Gr(2,3) \rightarrow (\mathbb{C}^3)^* / \sim (I will provide a problem set outlining this tomorrow) taking a 2-d subspace to its annihilator (a line in <math>(\mathbb{C}^3)^*$). Then, $V_1 = \operatorname{span}(v_1)$ is a subspace of V_2 precisely when $\alpha(v_1) = 0$, where $\operatorname{span}(\alpha) = V_2^{\perp}$. REmember that elements of the dual of \mathbb{C}^3 should be considered as row vectors, so that $\alpha(v_1) = 0$ can be realised as a dot product.

Some Algebra

We can express the above information algebraically as follows: there is an algebra homomorphism

$$\Phi: \mathbb{C}[p_i, p_{jk}] \to \mathbb{C}[X]; \begin{array}{ccc} p_i & \mapsto & \Delta_i \\ p_{jk} & \mapsto & \Delta_{jk} \end{array}$$

and we have $J \stackrel{def}{=} \ker \Phi = (p_1 p_{23} - p_2 p_{13} + p_3 p_{12}).$

We define $\mathcal{P} = im\Phi$, the **Plucker (or flag) algebra**; it provides our first example of **toric degeneration** (whatever this means!). The Δ 's appearing above are called **Plucker coordinates**.

Define a total order on $\mathbb{C}[p_i, p_{jk}]$ as follows: firs declare that

$$p_{12} \prec p_{13} \prec p_{23} \prec p_1 \prec p_2 \prec p_3$$
,

and extend to the **grevlex order**: thus $p^a > p^b$ if and only if |a| > |b| or |a| = |b| and the rightmost nonzero entry of a - b is negative. Here p^a is a monomial in the variables $p_1, p_2, ..., p_{23}$. Examples.

In particular, the **initial term of** $p_1p_{23} - p_2p_{13} + p_3p_{12}$ with respect to \prec is p_1p_{23} .

It is a fact from theory of Groebner bases that the monomials appearing outside of in_{\prec}(*J*) define a basis of $\mathbb{C}[p_i, p_{jk}]/J$.

Hence, a C-basis of the Plucker algebra is given by the monomials

$$\{\Delta_1^*, \Delta_2^*, \Delta_3^*, \Delta_{12}^*, \Delta_{13}^*, \Delta_{23}^*, (\Delta_2 \Delta_{13})^*, (\Delta_3 \Delta_{12})^*\}$$

Now, we turn our attention to \mathcal{P} proper. Order the variables x_{ij} by

$$x_{11} > x_{12} > x_{13} > x_{21} > x_{22} > x_{23}$$

and extend to an order on monomials in $\mathbb{C}[x]$ via lexicographic ordering. Notice that the initial (=highest) terms of a Plucker coordinate Δ is its **diagonal term**.

The Plucker coordinates form a **SAGBI basis** (=Subalgebra Analog of Groebner Basis for Ideals) for the Plucker algebra: they generate \mathcal{P} and, moreover, their initial terms generate the **initial algebra of** \mathcal{P} (wrt <). Existence of SAGBI bases lead to nice normal forms for elements in \mathcal{P} .

For any monomial $\Phi(p^a) \in \mathcal{P}$, its initial term (in the x's) gives rise to a semistandard tableaux. Conversely, all monomials appearing in in_<(\mathcal{P}) come from semistandard monomials. Examples. The content of what we have seen above can be summarised as follows: we can degenerate the Plucker algebra to the semigroup algebra generated by the semigroup A consisting of semistandard monomials.

Gelfand-Tsetlin semigroups

Remark: Observe that the preceeding discussion depended on a choice: we chose an ordering on monomials so that the diagonal terms of the Plucker coordinates were initial. We showed that the Plucker coordinates then determined a SAGBI basis of \mathcal{P} and this then allowed us to deduce that the semistandard monomials formed a basis for the initial algebra of \mathcal{P} with respect to this (diagonal) ordering. In fact, if we chose an antidiagonal ordering, the same result holds (with appropriate modifications).

For a diagonal monomial order on $\mathbb{C}[x]$ we can describe the semigroup \mathcal{A} in a nice combinitorial manner. We represent the diagonal terms of the Plucker coordinates Δ via their positions in the matrix; for example

$$\Delta_1 \leftrightarrow \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{matrix}, \quad \Delta_{13} \leftrightarrow \begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{matrix}.$$

Observe that we can put the shapes of these matrices (ie, the shapes of where the 1's are) into bijection with the set

 $\mathcal{H} = \{ \text{partitions having (at most two) distinct parts of size at most 3} \}$

Hence, we see that

A **Gelfand-Tsetlin pattern** is a sequence of (nonnegative) real numbers (a, b, c, u, v, w) satisfying some conditions (that I'll write on the board):

Consider the collection of integer GT patterns; they form a semigroup \mathcal{GT} under componentwise addition.

Here's the culmination of the above considerations: the semigroup A is isomorphic (as a semigroup), to the semigroup of Gelfand-Tsetlin patterns \mathcal{GT} .

Remark: this is a little different to what appears in Miller-Sturmfels. This is because our definition of GT-pattern is 'not quite' correct; however, for our current purposes this doesn't matter.

So, what have we just seen? Here's a summary:

- We can use Plucker coordinates to give a straightforward(?) description of complete flags; namely, two flags are the same if and only if their Plucker coordinate values are the same (for any choice of matrix to represent them).
- Thus, it seems natural to study the algebra of Plucker coordinates (this is what algebraic geometry is about), so we introduced the Plucker algebra \mathcal{P} .

- Plucker coordinates generate \mathcal{P} and have a nice property they form a SAGBI basis. This allows us to 'degenerate' \mathcal{P} to a simpler semigroup algebra (= algebra generated by monomials in x's).
- The resulting semigroup algebra (ie the algebra generated by monomials with exponents appearing in A) is isomorphic to the algebra generated by the semigroup of Gelfand-Tsetlin patterns; this is an algebra generated by monomials.

Here's the punchline: the algebraic degeneration we have obtained above gives rise to a geometric degeneration of the flag variety to a **toric variety**