UC Berkeley Summer Undergraduate Research Program 2015 June 21

Today we will discuss: complete flags, Plucker coordinates, Gelfand-Tsetlin polytopes.
In order to illustrate what's to come we will focus on an example and highlight some interesting features; all of what follows can discussed in general terms. See Miller-Sturmfels 'Combinatorial Commutative Algebra', Ch. 14 for more details. (Note: this reference can be hard to read in places. I have extracted the essential results.)
A complete flag in \mathbb{C}^{3} (or simply a flag) is a sequence of subspace $\{0\}=V_{0} \subset V_{1} \subset V_{2} \subset$ $V_{3}=\mathbb{C}^{3}$, such that $\operatorname{dim} V_{i}=i$. We denote the set of all flags in \mathbb{C}^{3} by F_{3}, and will often write V_{0} when considering a single flag.

So, really, a flag is just a pair (line, plane), with the line lying in the plane. We want to consider a 'nice' algebraic description of FI_{3}; namely, we want some 'coordinates' that can distinguish different flags.

Suppose that $V_{\bullet} \in \mathrm{Fl}_{3}$ is a flag. Then, V_{1} is determined by specfiying, up to nonzero scalar multiplication, a nonzero vector of V_{1}. Determining V_{2} requires some more consideration. Take any basis $\left(v_{1}, v_{2}\right)$ of V_{2}. Then, basic linear algebra states that

$$
V_{2}=\operatorname{row}\left(\left[\begin{array}{l}
v_{1}^{t} \\
v_{2}^{t}
\end{array}\right]\right)=\operatorname{row} U,
$$

where U is the reduced echelon form of the matrix $A=\left[\begin{array}{c}v_{1}^{t} \\ v_{2}^{t}\end{array}\right]$; that is, row operations preserve the row space.

Hence, two 2-d subspaces of \mathbb{C}^{3}, V_{2} and V_{2}^{\prime}, are equal precisely if the matrices A and A^{\prime} we obtain after choosing a basis for each are row-equivalent.
This sounds like we've solved our problem (which we have, kind of). However, row-reduction is a pain in general (especially if we want to generalise our approach to flags in \mathbb{C}^{n}). As is the case in mathematics, let's make things harder to make them easier in the long run.

Notice that the possible reduced echelon forms of A are

$$
\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & *
\end{array}\right],\left[\begin{array}{lll}
1 & * & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

In each case we see that at least one of the 2×2-minors is nonzero; in fact, this is true in general - let A be a 2×3 matrix. Then, $\operatorname{dim} \operatorname{row}(A)=2$ if and only if at least one of the 2×2 minors is nonzero.

Denote the minors of a 2×3 generic matrix $\Delta_{12}, \Delta_{13}, \Delta_{23}$; these are polynomial functions on the space of 2×3 matrices in the variables $x_{i j}$. Hence, for any $A=\left[a_{i j}\right] \in M_{2 \times 3}(\mathbb{C})$,

$$
\Delta_{12}(A)=a_{12} a_{22}-a_{21} a_{12}, \quad \text { etc. }
$$

In fact, the minors completely determine the row span of a full-rank 2×3 matrix in the following sense: $\operatorname{row}(A)=\operatorname{row}\left(A^{\prime}\right)$ if and only if there exists $c \neq 0$ such that $\left(\Delta_{12}(A), \Delta_{13}(A), \Delta_{23}(A)\right)=$ $c\left(\Delta_{12}\left(A^{\prime}\right), \Delta_{13}\left(A^{\prime}\right), \Delta_{23}\left(A^{\prime}\right)\right)$.
Let's see how this works: suppose that there's nonzero c as in the statement. As A and A^{\prime} are full rank we must have that one of the minors is nonzero. Suppose that $\Delta_{12}(A) \neq 0$ (so
that $\Delta_{12}\left(A^{\prime}\right) \neq 0$: we want to show that $\operatorname{row}(A)=\operatorname{row}\left(A^{\prime}\right)$. Choose bases $\left(v_{1}, v_{2}\right)$ (resp. $\left.\left(v_{1}^{\prime}, v_{2}^{\prime}\right)\right)$ of $\operatorname{row}(A)\left(\operatorname{resp} . \operatorname{row}\left(A^{\prime}\right)\right)$. We must show that the following systems of equations are consistent

$$
A^{t} x=v_{1}^{\prime}, \quad A^{t} x=v_{2}^{\prime} .
$$

Suppose that

$$
A^{t}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]
$$

and B is the (2×2) inverse of $\left[\begin{array}{ll}a & d \\ b & e\end{array}\right]$.
We want to row-reduce $\left[A^{t}:\left(A^{\prime}\right)^{t}\right]$: we find

$$
\left[\begin{array}{ll}
B & 0 \\
0 & 1
\end{array}\right]\left[A^{t}:\left(A^{\prime}\right)^{t}\right]=\left[\begin{array}{lllll}
1 & 0 & : & a^{\prime} & d^{\prime} \\
0 & 1 & : & b^{\prime} & e^{\prime} \\
c & f & : & c^{\prime} & f^{\prime}
\end{array}\right]
$$

The system we were solving is consistent if $(c, f)=(0,0)$ implies $\left(c^{\prime}, f^{\prime}\right)=(0,0)$. Suppose that $(c, f)=(0,0)$. Then, $\Delta_{13}(A)=\Delta_{23}(A)=0$, so that $\Delta_{13}\left(A^{\prime}\right)=\Delta_{23}\left(A^{\prime}\right)=0$. Hence, $a^{\prime} f^{\prime}=d^{\prime} c^{\prime}$ and $b^{\prime} f^{\prime}=c^{\prime} e^{\prime}$. As $\Delta_{12}\left(A^{\prime}\right) \neq 0$ this implies that $\left(a^{\prime}, d^{\prime}\right) \neq(0,0)$ (why?). If $a^{\prime} \neq 0$ then $f^{\prime}=d^{\prime} c^{\prime} / a^{\prime}$ and

$$
b^{\prime} c^{\prime} d^{\prime} / a^{\prime}=c^{\prime} e^{\prime} \Longrightarrow 0=\frac{c^{\prime}}{a^{\prime}}\left(b^{\prime} d^{\prime}-a^{\prime} e^{\prime}\right) \Longrightarrow 0=\Delta_{12}\left(A^{\prime}\right),
$$

which is a contradiction. Similar arguments (assuming $\Delta_{13}(A) \neq 0, \Delta_{23}(A) \neq 0$) give the result.

Hence, up to nonzero scalar multiplication, a 2-d subspace in \mathbb{C}^{3} is determined by (the nonzero vector) $\left(\Delta_{12}, \Delta_{13}, \Delta_{23}\right)$. Hence, we've shown that there is an injective function

$$
\left\{2 \text {-d subspaces in } \mathbb{C}^{3}\right\} \rightarrow \mathbb{C}^{3} / \sim ; V_{2} \mapsto\left[\Delta_{i j}(A)\right]
$$

where $u \sim v$ if there exists nonzero λ such that $u=\lambda v$. This is a particular example of a more general result that we will see later (the Plucker embedding of a Grassmannian).

Denote $\Delta_{1}=x_{11}, \Delta_{2}=x_{12}, \Delta_{3}=x_{13}$.
Consider a flag V_{0}. As above, we can use a 2×3 matrix A to write down V_{0} in more concrete terms: the first row of A spans V_{1} and $\operatorname{row}(A)=V_{2}$. Moreover, up to nonzero scalar multiplication, we find an injective function

$$
\mathrm{Fl}_{3} \rightarrow \mathbb{C}^{3} / \sim \times \mathbb{C}^{3} / \sim ; V_{\bullet} \mapsto\left(\left[\Delta_{i}(A)\right],\left[\Delta_{i j}(A)\right]\right)
$$

and we observe that the 'coordinates' $\Delta_{i}, \Delta_{j k}$ are related to each other (they both come from a generic 2×3 matrix). There is exactly one relation (Not so easy to see this!) among the Δ 's:

$$
\Delta_{1} \Delta_{23}-\Delta_{2} \Delta_{13}+\Delta_{3} \Delta_{12}=0
$$

Edit 6/22: there were some great observations today about 'orthogonal' lines etc. so I though I would include them here.

Remark: The above relation looks very much like a 'dot product'. In fact, there is a sense in which this is true: the subspace V_{2} has a 1-d annihilator $V_{2}^{\perp} \subset\left(\mathbb{C}^{3}\right)^{*}$. Recall that the annihilator of a subspace U is

$$
U^{\perp}=\left\{\alpha \in\left(\mathbb{C}^{3}\right)^{*} \mid \alpha(\boldsymbol{u})=0, \text { for every } \boldsymbol{u} \in \boldsymbol{U}\right\}
$$

The Plucker coordinates can be consider as defining a function from $\operatorname{Gr}(2,3) \rightarrow\left(\mathbb{C}^{3}\right)^{*} / \sim(1$ will provide a problem set outlining this tomorrow) taking a 2-d subspace to its annihilator (a line in $\left.\left(\mathbb{C}^{3}\right)^{*}\right)$. Then, $V_{1}=\operatorname{span}\left(v_{1}\right)$ is a subspace of V_{2} precisely when $\alpha\left(v_{1}\right)=0$, where $\operatorname{span}(\alpha)=V_{2}^{\perp}$. REmember that elements of the dual of \mathbb{C}^{3} should be considered as row vectors, so that $\alpha\left(v_{1}\right)=0$ can be realised as a dot product.

Some Algebra

We can express the above information algebraically as follows: there is an algebra homomorphism

$$
\Phi: \mathbb{C}\left[p_{i}, p_{j k}\right] \rightarrow \mathbb{C}[X] ; \begin{array}{ccc}
p_{i} & \mapsto & \Delta_{i} \\
p_{j k} & \mapsto & \Delta_{j k}
\end{array}
$$

and we have $J \stackrel{\text { def }}{=} \operatorname{ker} \Phi=\left(p_{1} p_{23}-p_{2} p_{13}+p_{3} p_{12}\right)$.
We define $\mathcal{P}=\mathrm{im} \Phi$, the Plucker (or flag) algebra; it provides our first example of toric degeneration (whatever this means!). The Δ 's appearing above are called Plucker coordinates.
Define a total order on $\mathbb{C}\left[p_{i}, p_{j k}\right]$ as follows: firs declare that

$$
p_{12} \prec p_{13} \prec p_{23} \prec p_{1} \prec p_{2} \prec p_{3},
$$

and extend to the grevlex order: thus $p^{a}>p^{b}$ if and only if $|a|>|b|$ or $|a|=|b|$ and the rightmost nonzero entry of $a-b$ is negative. Here p^{a} is a monomial in the variables $p_{1}, p_{2}, \ldots, p_{23}$. Examples.
In particular, the initial term of $\underline{p_{1} p_{23}}-p_{2} p_{13}+p_{3} p_{12}$ with respect to \prec is $p_{1} p_{23}$.
It is a fact from theory of Groebner bases that the monomials appearing outside of $\mathrm{in}_{\prec}(J)$ define a basis of $\mathbb{C}\left[p_{i}, p_{j k}\right] / J$.
Hence, a \mathbb{C}-basis of the Plucker algebra is given by the monomials

$$
\left\{\Delta_{1}^{*}, \Delta_{2}^{*}, \Delta_{3}^{*}, \Delta_{12}^{*}, \Delta_{13}^{*}, \Delta_{23}^{*},\left(\Delta_{2} \Delta_{13}\right)^{*},\left(\Delta_{3} \Delta_{12}\right)^{*}\right\}
$$

Now, we turn our attention to \mathcal{P} proper. Order the variables $x_{i j}$ by

$$
x_{11}>x_{12}>x_{13}>x_{21}>x_{22}>x_{23},
$$

and extend to an order on monomials in $\mathbb{C}[x]$ via lexicographic ordering. Notice that the initial (=highest) terms of a Plucker coordinate Δ is its diagonal term.
The Plucker coordinates form a SAGBI basis (=Subalgebra Analog of Groebner Basis for Ideals) for the Plucker algebra: they generate \mathcal{P} and, moreover, their initial terms generate the initial algebra of $\mathcal{P}(\mathbf{w r t}<)$. Existence of SAGBI bases lead to nice normal forms for elements in \mathcal{P}.

For any monomial $\Phi\left(p^{a}\right) \in \mathcal{P}$, its initial term (in the x 's) gives rise to a semistandard tableaux. Conversely, all monomials appearing in $\mathrm{in}_{<}(\mathcal{P})$ come from semistandard monomials. Examples.

The content of what we have seen above can be summarised as follows: we can degenerate the Plucker algebra to the semigroup algebra generated by the semigroup \mathcal{A} consisting of semistandard monomials.

Gelfand-Tsetlin semigroups

Remark: Observe that the preceeding discussion depended on a choice: we chose an ordering on monomials so that the diagonal terms of the Plucker coordinates were initial. We showed that the Plucker coordinates then determined a SAGBI basis of \mathcal{P} and this then allowed us to deduce that the semistandard monomials formed a basis for the initial algebra of \mathcal{P} with respect to this (diagonal) ordering. In fact, if we chose an antidiagonal ordering, the same result holds (with appropriate modifications).

For a diagonal monomial order on $\mathbb{C}[x]$ we can describe the semigroup \mathcal{A} in a nice combintorial manner. We represent the diagonal terms of the Plucker coordinates Δ via their positions in the matrix; for example

$$
\Delta_{1} \leftrightarrow \begin{array}{llll}
1 & 0 & 0 \\
0 & 0 & 0^{\prime}
\end{array} \quad \Delta_{13} \leftrightarrow \begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array} .
$$

Observe that we can put the shapes of these matrices (ie, the shapes of where the 1's are) into bijection with the set

$$
\mathcal{H}=\{\text { partitions having (at most two) distinct parts of size at most } 3\}
$$

Hence, we see that

$$
\mathcal{H}=\{\square, \square, \square \square, \square, \square, \square \square\}
$$

A Gelfand-Tsetlin pattern is a sequence of (nonnegative) real numbers (a, b, c, u, v, w) satisfying some conditions (that I'll write on the board):

Consider the collection of integer GT patterns; they form a semigroup $\mathcal{G} \mathcal{T}$ under componentwise addition.

Here's the culmination of the above considerations: the semigroup \mathcal{A} is isomorphic (as a semigroup), to the semigroup of Gelfand-Tsetlin patterns $\mathcal{G} \mathcal{T}$.

Remark: this is a little different to what appears in Miller-Sturmfels. This is because our definition of GT-pattern is 'not quite' correct; however, for our current purposes this doesn't matter.

So, what have we just seen? Here's a summary:

- We can use Plucker coordinates to give a straightforward(?) description of complete flags; namely, two flags are the same if and only if their Plucker coordinate values are the same (for any choice of matrix to represent them).
- Thus, it seems natural to study the algebra of Plucker coordinates (this is what algebraic geometry is about), so we introduced the Plucker algebra \mathcal{P}.
- Plucker coordinates generate \mathcal{P} and have a nice property - they form a SAGBI basis. This allows us to 'degenerate' \mathcal{P} to a simpler semigroup algebra ($=$ algebra generated by monomials in x 's).
- The resulting semigroup algebra (ie the algebra generated by monomials with exponents appearing in \mathcal{A}) is isomorphic to the algebra generated by the semigroup of GelfandTsetlin patterns; this is an algebra generated by monomials.

Here's the punchline: the algebraic degeneration we have obtained above gives rise to a geometric degeneration of the flag variety to a toric variety

