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Today we will discuss: complete flags, Plucker coordinates, Gelfand-Tsetlin polytopes.

In order to illustrate what’s to come we will focus on an example and highlight some interesting
features; all of what follows can discussed in general terms. See Miller-Sturmfels ‘Combinatorial
Commutative Algebra’, Ch. 14 for more details. (Note: this reference can be hard to read in
places. I have extracted the essential results.)

A complete flag in C3 (or simply a flag) is a sequence of subspace {0} = V0 ⊂ V1 ⊂ V2 ⊂
V3 = C3, such that dim Vi = i . We denote the set of all flags in C3 by Fl3, and will often write
V• when considering a single flag.

So, really, a flag is just a pair (line, plane), with the line lying in the plane. We want to consider
a ‘nice’ algebraic description of Fl3; namely, we want some ‘coordinates’ that can distinguish
different flags.

Suppose that V• ∈ Fl3 is a flag. Then, V1 is determined by specfiying, up to nonzero scalar
multiplication, a nonzero vector of V1. Determining V2 requires some more consideration. Take
any basis (v1, v2) of V2. Then, basic linear algebra states that

V2 = row

([
v t
1

v t
2

])
= rowU,

where U is the reduced echelon form of the matrix A =

[
v t
1

v t
2

]
; that is, row operations preserve

the row space.

Hence, two 2-d subspaces of C3, V2 and V ′2, are equal precisely if the matrices A and A′ we
obtain after choosing a basis for each are row-equivalent.

This sounds like we’ve solved our problem (which we have, kind of). However, row-reduction
is a pain in general (especially if we want to generalise our approach to flags in Cn). As is the
case in mathematics, let’s make things harder to make them easier in the long run.

Notice that the possible reduced echelon forms of A are[
1 0 ∗
0 1 ∗

]
,

[
1 ∗ 0
0 0 1

]
,

[
0 1 0
0 0 1

]
.

In each case we see that at least one of the 2 × 2-minors is nonzero; in fact, this is true in
general - let A be a 2× 3 matrix. Then, dim row(A) = 2 if and only if at least one of the
2× 2 minors is nonzero.

Denote the minors of a 2× 3 generic matrix ∆12, ∆13, ∆23; these are polynomial functions on
the space of 2× 3 matrices in the variables xij . Hence, for any A = [aij ] ∈ M2×3(C),

∆12(A) = a12a22 − a21a12, etc.

In fact, the minors completely determine the row span of a full-rank 2×3 matrix in the following
sense: row(A) = row(A′) if and only if there exists c 6= 0 such that (∆12(A), ∆13(A), ∆23(A)) =
c(∆12(A′), ∆13(A′), ∆23(A′)).

Let’s see how this works: suppose that there’s nonzero c as in the statement. As A and A′

are full rank we must have that one of the minors is nonzero. Suppose that ∆12(A) 6= 0 (so
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that ∆12(A′) 6= 0: we want to show that row(A) = row(A′). Choose bases (v1, v2) (resp.
(v ′1, v ′2)) of row(A) (resp. row(A′)). We must show that the following systems of equations are
consistent

Atx = v ′1, Atx = v ′2.

Suppose that

At =

a d
b e
c f

 ,

and B is the (2× 2) inverse of

[
a d
b e

]
.

We want to row-reduce [At : (A′)t ]: we find

[
B 0
0 1

]
[At : (A′)t ] =

1 0 : a′ d ′

0 1 : b′ e ′

c f : c ′ f ′


The system we were solving is consistent if (c , f ) = (0, 0) implies (c ′, f ′) = (0, 0). Suppose
that (c , f ) = (0, 0). Then, ∆13(A) = ∆23(A) = 0, so that ∆13(A′) = ∆23(A′) = 0. Hence,
a′f ′ = d ′c ′ and b′f ′ = c ′e ′. As ∆12(A′) 6= 0 this implies that (a′, d ′) 6= (0, 0) (why?). If a′ 6= 0
then f ′ = d ′c ′/a′ and

b′c ′d ′/a′ = c ′e ′ =⇒ 0 =
c ′

a′
(b′d ′ − a′e ′) =⇒ 0 = ∆12(A′),

which is a contradiction. Similar arguments (assuming ∆13(A) 6= 0, ∆23(A) 6= 0) give the
result.

Hence, up to nonzero scalar multiplication, a 2-d subspace in C3 is determined by (the nonzero
vector) (∆12, ∆13, ∆23). Hence, we’ve shown that there is an injective function

{2-d subspaces in C3} → C3/ ∼ ; V2 7→ [∆ij(A)],

where u ∼ v if there exists nonzero λ such that u = λv . This is a particular example of a more
general result that we will see later (the Plucker embedding of a Grassmannian).

Denote ∆1 = x11, ∆2 = x12, ∆3 = x13.

Consider a flag V•. As above, we can use a 2 × 3 matrix A to write down V• in more
concrete terms: the first row of A spans V1 and row(A) = V2. Moreover, up to nonzero scalar
multiplication, we find an injective function

Fl3 → C3/ ∼ ×C3/ ∼ ; V• 7→ ([∆i (A)], [∆ij(A)])

and we observe that the ‘coordinates’ ∆i , ∆jk are related to each other (they both come from
a generic 2 × 3 matrix). There is exactly one relation (Not so easy to see this!) among the
∆’s:

∆1∆23 −∆2∆13 + ∆3∆12 = 0.

Edit 6/22: there were some great observations today about ‘orthogonal’ lines etc. so I though
I would include them here.
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Remark: The above relation looks very much like a ‘dot product’. In fact, there is a sense
in which this is true: the subspace V2 has a 1-d annihilator V⊥2 ⊂ (C3)∗. Recall that the
annihilator of a subspace U is

U⊥ = {α ∈ (C3)∗ | α(u) = 0, for every u ∈ U}.

The Plucker coordinates can be consider as defining a function from Gr(2, 3) → (C3)∗/ ∼ (I
will provide a problem set outlining this tomorrow) taking a 2-d subspace to its annihilator (a
line in (C3)∗). Then, V1 = span(v1) is a subspace of V2 precisely when α(v1) = 0, where
span(α) = V⊥2 . REmember that elements of the dual of C3 should be considered as row
vectors, so that α(v1) = 0 can be realised as a dot product.

Some Algebra

We can express the above information algebraically as follows: there is an algebra homomor-
phism

Φ : C[pi , pjk ]→ C[X ] ;
pi 7→ ∆i

pjk 7→ ∆jk

and we have J
def
= ker Φ = (p1p23 − p2p13 + p3p12).

We define P = imΦ, the Plucker (or flag) algebra; it provides our first example of toric de-
generation (whatever this means!). The ∆’s appearing above are called Plucker coordinates.

Define a total order on C[pi , pjk ] as follows: firs declare that

p12 ≺ p13 ≺ p23 ≺ p1 ≺ p2 ≺ p3,

and extend to the grevlex order: thus pa > pb if and only if |a| > |b| or |a| = |b| and
the rightmost nonzero entry of a − b is negative. Here pa is a monomial in the variables
p1, p2, ... , p23. Examples.

In particular, the initial term of p1p23 − p2p13 + p3p12 with respect to ≺ is p1p23.

It is a fact from theory of Groebner bases that the monomials appearing outside of in≺(J)
define a basis of C[pi , pjk ]/J.

Hence, a C-basis of the Plucker algebra is given by the monomials

{∆∗1, ∆∗2, ∆∗3, ∆∗12, ∆∗13, ∆∗23, (∆2∆13)∗, (∆3∆12)∗}

Now, we turn our attention to P proper. Order the variables xij by

x11 > x12 > x13 > x21 > x22 > x23,

and extend to an order on monomials in C[x ] via lexicographic ordering. Notice that the initial
(=highest) terms of a Plucker coordinate ∆ is its diagonal term.

The Plucker coordinates form a SAGBI basis (=Subalgebra Analog of Groebner Basis for
Ideals) for the Plucker algebra: they generate P and, moreover, their initial terms generate
the initial algebra of P (wrt <). Existence of SAGBI bases lead to nice normal forms for
elements in P.

For any monomial Φ(pa) ∈ P, its initial term (in the x ’s) gives rise to a semistandard tableaux.
Conversely, all monomials appearing in in<(P) come from semistandard monomials. Examples.
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The content of what we have seen above can be summarised as follows: we can degenerate
the Plucker algebra to the semigroup algebra generated by the semigroup A consisting
of semistandard monomials.

Gelfand-Tsetlin semigroups

Remark: Observe that the preceeding discussion depended on a choice: we chose an ordering
on monomials so that the diagonal terms of the Plucker coordinates were initial. We showed
that the Plucker coordinates then determined a SAGBI basis of P and this then allowed us to
deduce that the semistandard monomials formed a basis for the initial algebra of P with respect
to this (diagonal) ordering. In fact, if we chose an antidiagonal ordering, the same result holds
(with appropriate modifications).

For a diagonal monomial order on C[x ] we can describe the semigroup A in a nice combintorial
manner. We represent the diagonal terms of the Plucker coordinates ∆ via their positions in
the matrix; for example

∆1 ↔
1 0 0
0 0 0

, ∆13 ↔
1 0 0
0 0 1

.

Observe that we can put the shapes of these matrices (ie, the shapes of where the 1’s are) into
bijection with the set

H = {partitions having (at most two) distinct parts of size at most 3}

Hence, we see that

H =

{
, , , ,

}

A Gelfand-Tsetlin pattern is a sequence of (nonnegative) real numbers (a, b, c , u, v , w) sat-
isfying some conditions (that I’ll write on the board):

a b (c)
u v

w

Consider the collection of integer GT patterns; they form a semigroup GT under componentwise
addition.

Here’s the culmination of the above considerations: the semigroup A is isomorphic (as a
semigroup), to the semigroup of Gelfand-Tsetlin patterns GT .

Remark: this is a little different to what appears in Miller-Sturmfels. This is because our
definition of GT-pattern is ‘not quite’ correct; however, for our current purposes this doesn’t
matter.

So, what have we just seen? Here’s a summary:

- We can use Plucker coordinates to give a straightforward(?) description of complete
flags; namely, two flags are the same if and only if their Plucker coordinate values are
the same (for any choice of matrix to represent them).

- Thus, it seems natural to study the algebra of Plucker coordinates (this is what algebraic
geometry is about), so we introduced the Plucker algebra P.
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- Plucker coordinates generate P and have a nice property - they form a SAGBI basis.
This allows us to ‘degenerate’ P to a simpler semigroup algebra (= algebra generated by
monomials in x ’s).

- The resulting semigroup algebra (ie the algebra generated by monomials with exponents
appearing in A) is isomorphic to the algebra generated by the semigroup of Gelfand-
Tsetlin patterns; this is an algebra generated by monomials.

Here’s the punchline: the algebraic degeneration we have obtained above gives rise to a geo-
metric degeneration of the flag variety to a toric variety
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