Math 110, Fall 2015. Funny Fields

A field is a set F, together with two operations,$+ \cdot$, called addition and multiplication, such that a bunch of axioms hold. In particular, there must exist two distinct elements $0,1 \in F$ such that

$$
\text { for every } x \in F, \quad 0+x=x+0=x, \text { and, } x \cdot 1=1 \cdot x=x
$$

Note that the elements $0,1 \in F$ need not be the same 'numbers' you are used to thinking about when seeing these symbols.

Fields should be thought of as collections of objects, together with well-defined notions of addition and multiplication, such that all of the 'usual' laws of arithmetic hold (eg. for any nonzero $a \in F$, there is another element $b \in F$ such that $a \cdot b=b \cdot a=1 \in F$).
Examples of fields are

$$
\mathbb{Q}=\{\text { rational numbers }\}, \quad \mathbb{R}=\{\text { real numbers }\}, \quad \mathbb{C}=\{\text { complex numbers }\}
$$

Now, let's talk about some 'funny fields': consider the set of numbers appearing on a standard clockface, let's call this set

$$
C=\{1,2,3,4,5,6,7,8,9,10,11,12\} .
$$

If we consider 'clock addition' - for example, $7+10$ should be interpreted as 'add 10 hours to 7 o'clock', with answer $7+10=5$ - then you can see that, for any $x \in C$, we have

$$
x+12=x
$$

Hence, the element 12 satisfies the conditions required of an element 0 in a 'field'. Thus, we can relabel $12 \leftrightarrow 0$, so we now have

$$
C=\{0,1,2,3,4,5,6,7,8,9,10,11\} .
$$

We have simply relabelled the object 12 as the object 0 - we are not saying (for now) that there is any relation between the (genuine, real) numbers 0 and 12.
You can check (directly!) that 'clock addition' is commutative (ie, it doesn't matter if I add 10 hours to 5 o'clock, or 5 hours to 10 o'clock), associative (ie, it doesn't matter if I add 10 hours to 5 o'clock (to get 3 o'clock) and then add 4 hours to $(5+10)$ (this is $(5+10)+4)$, or if I add 4 hours to 10 o'clock (to get 2 o'clock) and then add 5 hours to ($10+4$) (this is $5+(10+4))$), and that there exists 'clock additive' inverses (for any $x \in C$, if we let $y=12-x$ then $x+y=0 \in C$).
In particular, we see that $11+1=0 \in C$, so that $11 \in C$ possesses the properties that we expect of ' -1 '. Thus, we could relabel $11 \leftrightarrow-1$, and so on... Of course, have only discussed 'clock addition', and would hope for things to work out well for 'clock multiplication'...
If we define 'clock multiplication' as follows:

$$
\text { for any } a, b \in C, \quad a \cdot b \stackrel{\text { def }}{=} b+\ldots+b
$$

For example, $3 \cdot 7=7+7+7=2+7=9 \in C$ (recalling what 'clock addition' means).Then, $1 \in C$ is a multiplicative identity: for any $a \in C$ we have $1 \cdot a=a$ (by definition), and $a \cdot 1=1+\ldots+1=a$.

However, C is not a field: let's show that $2 \in C$ does not possess a multiplicative inverse. Suppose, in order to obtain a contradiction, C is a field so that 2 does have an inverse, let's call it $x \in C$. Thus, we must have $2 \cdot x=1 \in C$. Notice that $6 \cdot 2=2+\ldots+2=12=0 \in C$. Thus, we would have

$$
6=6 \cdot 1=6 \cdot(2 \cdot x) \stackrel{(1)}{=}(6 \cdot 2) \cdot x=0 \cdot x \stackrel{(2)}{=} 0
$$

which is absurd. Here we have used (1) associativity of multiplication, (2) the fact that $0 \cdot x=0 \in C$, for any $x \in C$.

Now, there is nothing special about having a clock with 12 numbers on it... We could define an n-clock to be a clock with n hours appearing, and define 'clock addition/multiplication' as above.

Fact: An n-clock (with clock addition/multiplication defined similarly to above) is a field if and only if n is a prime number (ie $n=2,3,5,7,11, \ldots$).
Consider the 5-clock $C_{5}=\{0,1,2,3,4\}$. In order to understand the ' 5 -clock addition/multiplication' we encode it in tables: the row i, column j entry is the result of adding/mutiplying i with j

+	0	1	2	3	4		0	1	2	3	4
0	0	1	2	3	4		0	0	0	0	0
0											
1	1	2	3	4	0		1	0	1	2	3
4											
2	2	3	4	0	1		2	0	2	4	1
3											
3	3	4	0	1	2		3	0	3	1	4
2											
4	4	0	1	2	3		4	0	4	3	2
1											

Note that $2 \cdot 3=1 \in C_{5}$, and $4 \cdot 4=1$, so that we could consider 2 as the multiplicative inverse of 3 , and 4 is its own multiplicative inverse...!

Remark: Note that the entire discussion above is based on the (given) notions of clock addition/multiplication; this arithmetic is called modular arithmetic. It may be possible to define new (weirder) notions of addition/multiplication on the set of numbers appearing on an n-clock face, such that the resulting algebraic object is/is not a field!

Problem 1 on HW1 is asking you to prove that there is precisely one notion of addition/multiplication on $\{0,1, x\}$ that gives rise to a field structure on $\{0,1, x\}$.

