Math 110, Fall 2015.

Homework 9, optionally due Oct 28.

Prob 1. Show that the function taking the pair $\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3}$ to $x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}$ is not an inner product.

Prob 2. Use the dot product to show that the diagonals of a rhombus are perpendicular to each other.

Prob 3. Prove that, for all complex numbers $a_{j}, b_{j}, j=1, \ldots, n$,

$$
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2} \leq\left(\sum_{j=1}^{n} j\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{n} \frac{\left|b_{j}\right|^{2}}{j}\right)
$$

Prob 4. Let e_{1}, \ldots, e_{m} be an orthonormal list of vectors. Prove that $v \in \operatorname{span}\left(e_{1}, \ldots, e_{m}\right)$ if and only if

$$
\|v\|^{2}=\sum_{j=1}^{m}\left|\left\langle v, e_{j}\right\rangle\right|^{2}
$$

Prob 5. Consider the space $\mathcal{P}_{3}(\mathbb{R})$ with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Use the Gram-Schmidt algorithm to orthonormalize the basis $1, x, x^{2}, x^{3}$.

Prob 6. Find $p \in \mathcal{P}_{3}(\mathbb{R})$ such that $p(0)=0, p^{\prime}(0)=0$, and

$$
\int_{0}^{1}|1+4 x-p(x)|^{2} d x
$$

is as small as possible.

