Math 110, Fall 2015.
 Homework 8, due Oct 21.

Prob 1. Let v be an eigenvector of $T \in \mathcal{L}(V)$ with eigenvalue λ. Show that

$$
\left(T^{3}+T^{2}-2 T+I\right) v=\left(\lambda^{3}+\lambda^{2}-2 \lambda+1\right) v
$$

How does this observation generalize?

Prob 2. Let $S, T \in \mathcal{L}(V)$ and suppose S is invertible. Prove that, for any polynomial $p \in \mathcal{P}(\mathbb{F})$,

$$
p\left(S T S^{-1}\right)=S p(T) S^{-1}
$$

Prob 3. Give an example of an operator $T \in \mathcal{L}\left(P_{2}(\mathbb{C})\right)$ with eigenvalues 3 and 4 which is not diagonalizable.

Prob 4. Let V be a finite-dimensional real vector space and let $T \in \mathcal{L}(V)$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(\lambda):=\operatorname{dim} \operatorname{range}(T-\lambda I)
$$

Which condition on T is equivalent to f being a continuous function?

Prob 5. Suppose V is a finite-dimensional complex vector space, $T \in \mathcal{L}(V)$ is diagonalizable, and all eigenvalues of T are strictly below 1 in absolute value. Given $\phi \in V^{\prime}$ and $v \in V$, what is $\lim _{n \rightarrow \infty} \phi\left(T^{n} v\right)$?

Prob 6. Explain how diagonalizability of (square) matrices you learned in Math 54 is related to the diagonalizability of operators.

