Math 110, Fall 2015. Homework 7, due Oct 14.

Prob 1. Prove that every polynomial of odd degree with real coefficients has a real zero.

Prob 2. Let $p \in \mathcal{P}_n(\mathbb{C})$ for some *n* and suppose there exist distinct real numbers x_0, x_1, \ldots, x_n such that $p(x_j) \in \mathbb{R}$ for all $j = 0, \ldots, n$. Prove that all coefficients of *p* are real.

Prob 3. [Lagrange interpolation.] Prove using linear algebra: given distinct data sites x_j and arbitrary data y_j , j = 0, ..., n, there is a unique polynomial $p \in \mathcal{P}_n(\mathbb{R})$ such that $p(x_j) = y_j$, for all j = 0, ..., n.

Prob 4. Give an example of a linear map $T : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ with an invariant subspace other than $\{0\}$, the whole space $\mathcal{P}_3(\mathbb{R})$, or null T.

Prob 5. Given $S, T \in \mathcal{L}(V)$ such that ST = TS, prove that null S and range S are invariant under T.

Prob 6. Let $T : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}) : p \mapsto p - p'$. Find all eigenvalues and eigenvectors of T.