## Math 110, Fall 2015. <br> Homework 7, due Oct 14.

Prob 1. Prove that every polynomial of odd degree with real coefficients has a real zero.
Prob 2. Let $p \in \mathcal{P}_{n}(\mathbb{C})$ for some $n$ and suppose there exist distinct real numbers $x_{0}, x_{1}, \ldots, x_{n}$ such that $p\left(x_{j}\right) \in \mathbb{R}$ for all $j=0, \ldots, n$. Prove that all coefficients of $p$ are real.

Prob 3. [Lagrange interpolation.] Prove using linear algebra: given distinct data sites $x_{j}$ and arbitrary data $y_{j}, j=0, \ldots, n$, there is a unique polynomial $p \in \mathcal{P}_{n}(\mathbb{R})$ such that $p\left(x_{j}\right)=y_{j}$, for all $j=0, \ldots, n$.

Prob 4. Give an example of a linear map $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})$ with an invariant subspace other than $\{0\}$, the whole space $\mathcal{P}_{3}(\mathbb{R})$, or null $T$.

Prob 5. Given $S, T \in \mathcal{L}(V)$ such that $S T=T S$, prove that null $S$ and range $S$ are invariant under $T$.

Prob 6. Let $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}): p \mapsto p-p^{\prime}$. Find all eigenvalues and eigenvectors of $T$.

