Math 110, Fall 2015.

Homework 6, due Oct 7.

Prob 1. Let $V=\mathcal{P}_{2}(\mathbb{R})$ and suppose $\varphi_{j}(p)=p(j), j=0,1,2$. Prove that $\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right)$ is a basis for $\mathcal{P}_{2}(\mathbb{R})^{\prime}$ and find a basis $\left(p_{0}, p_{1}, p_{2}\right)$ of $\mathcal{P}_{2}(\mathbb{R})$ whose dual is $\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right)$.

Prob 2. Let V be a finite-dimensional vector space and let U be its proper subspace (i.e., $U \neq V$). Prove that there exists $\varphi \in V^{\prime}$ such that $\varphi(u)=0$ for all $u \in U$ but $\varphi \neq 0$.

Prob 3. Let $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}): p(x) \mapsto(x-1)^{3} p(x)+p^{\prime \prime}(x)$.
(a) Let $\varphi \in \mathcal{P}(\mathbb{R})^{\prime}: \varphi(p)=p^{\prime}(1)$. Give a formula for $T^{\prime}(\varphi)$.
(b) Let $\varphi \in \mathcal{P}(\mathbb{R})^{\prime}: \varphi(p)=\int_{0}^{1} p(x) d x$. Evaluate $T^{\prime}(\varphi)\left(x^{2}\right)$.

Prob 4. Suppose V is finite-dimensional and U, W are its subpaces. Prove that

$$
(U \cap W)^{0}=U^{0}+W^{0}
$$

Prob 5. Suppose V and W are finite-dimensional, $T \in \mathcal{L}(V, W)$, and null $T^{\prime}=\operatorname{span}(\varphi)$ for some $\varphi \in W^{\prime}$. Prove that range $T=$ null φ.

