Math 110, Fall 2015.
 Homework 5, due Sept 30.

Prob 1. Suppose V and W are finite-dimensional vector spaces. Let $v \in V$, and consider

$$
E:=\{T \in \mathcal{L}(V, W): T v=0\}
$$

(a) Show that E is a subspace of $\mathcal{L}(V, W)$.
(b) Suppose $v \neq 0$. What is $\operatorname{dim} E$?

Prob 2. Suppose u, w are vectors in V and U, W are subspaces of V such that $u+U=w+W$. Does this imply that $U=W$?

Prob 3. Let U be a subspace of V such that V / U is finite-dimensional. Prove or disprove: V is isomorphic to $U \times(V / U)$.

Prob 4. Let U be a subspace of V, and consider $T \in \mathcal{L}(V, W)$. Let π denote the quotient map from V onto V / U. Prove that $U \subset$ null T if and only if there exists $S \in \mathcal{L}(V / U, W)$ such that $T=S \circ \pi$.

