Math 110, Fall 2015.

Homework 2, due Sept 9.

Prob 1. Prove or give a counterexample: if U_{1}, U_{2}, W are subspaces of V such that

$$
U_{1}+W=U_{2}+W
$$

then $U_{1}=U_{2}$.
Prob 2. Suppose

$$
U=\left\{(x, y, x+y, x-y, 2 x) \in \mathbb{F}^{5}: x, y \in \mathbb{F}\right\}
$$

Find three subspaces W_{1}, W_{2}, W_{3} of \mathbb{F}^{5}, none of which equals $\{0\}$, such that $\mathbb{F}^{5}=U \oplus W_{1} \oplus W_{2} \oplus W_{3}$.

Prob 3. Suppose that the list $v_{1}, v_{2}, v_{3}, v_{4}$ is linearly independent in V. Show that the list $v_{1}-v_{2}, v_{1}+$ $v_{2}, v_{3}-v_{2}, v_{4}-v_{1}$ is also linearly independent in V.

Prob 4. Does the statement of Problem 3 still hold if we replace 'linearly independent' by 'a basis'?

Prob 5. Prove that the space \mathbb{R}^{R} is infinite-dimensional.

Prob 6. What is the dimension of

- (a) \mathbb{C} as a vector space over \mathbb{C} ?
- (b) \mathbb{C} as a vector space over \mathbb{R} ?
- (c) \mathbb{C}^{2} as a vector space over \mathbb{C} ?
- (d) \mathbb{C}^{2} as a vector space over \mathbb{R} ?

