Math 110, Fall 2015. Homework 2, due Sept 9.

Prob 1. Prove or give a counterexample: if U_1 , U_2 , W are subspaces of V such that

$$U_1 + W = U_2 + W$$

then $U_1 = U_2$.

Prob 2. Suppose

$$U = \{ (x, y, x + y, x - y, 2x) \in \mathbb{F}^5 : x, y \in \mathbb{F} \}.$$

Find three subspaces W_1 , W_2 , W_3 of \mathbb{F}^5 , none of which equals $\{0\}$, such that $\mathbb{F}^5 = U \oplus W_1 \oplus W_2 \oplus W_3$.

Prob 3. Suppose that the list v_1, v_2, v_3, v_4 is linearly independent in V. Show that the list $v_1 - v_2, v_1 + v_2, v_3 - v_2, v_4 - v_1$ is also linearly independent in V.

Prob 4. Does the statement of Problem 3 still hold if we replace 'linearly independent' by 'a basis'?

Prob 5. Prove that the space \mathbb{R}^R is infinite-dimensional.

Prob 6. What is the dimension of

- (a) \mathbb{C} as a vector space over \mathbb{C} ?
- (b) \mathbb{C} as a vector space over \mathbb{R} ?
- (c) \mathbb{C}^2 as a vector space over \mathbb{C} ?
- (d) \mathbb{C}^2 as a vector space over \mathbb{R} ?