Math 110, Fall 2015.
 Homework 13, due Nov 25.

Prob 1. Let V be a complex n-dimensional space and let $T \in \mathcal{L}(V)$ be such that null $T^{n-3} \neq \operatorname{null} T^{n-2}$. How many distinct eigenvalues can T have?

Prob 2. Let $V=\mathcal{P}_{3}(\mathbb{C})$ and let $D \in \mathcal{L}(V)$ be the differentiation operator. Find a square root of $\mathbb{I}+D$.

Prob 3. Let V be a complex (finite-dimensional) vector space and let $T \in \mathcal{L}(V)$. Prove that there exist operators D and N in $\mathcal{L}(V)$ such that $T=D+N, D$ is diagonalizable, N is nilpotent, and $D N=N D$.

Prob 4. Suppose that V is a complex vector space of dimension n. Let $T \in \mathcal{L}(V)$ be invertible. Let p denote the characteristic polynomial of T and let q denote the characteristic polynomial of T^{-1}. Prove that

$$
q(z)=\frac{z^{n}}{p(0)} p\left(\frac{1}{z}\right) \quad \text { for all } \quad z \in \mathbb{C} \backslash\{0\}
$$

Prob 5. Suppose the Jordan form of an operator $T \in \mathcal{L}(V)$ consists of Jordan blocks of sizes $3 \times 3,4 \times 4$, $1 \times 1,5 \times 5,2 \times 2$, corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{2}, \lambda_{1}$, respectively. Assuming that $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$, find the minimal and the characteristic polynomial of T.

