Math 110, Fall 2015. Homework 13, due Nov 25.

Prob 1. Let V be a complex n-dimensional space and let $T \in \mathcal{L}(V)$ be such that null $T^{n-3} \neq$ null T^{n-2} . How many distinct eigenvalues can T have?

Prob 2. Let $V = \mathcal{P}_3(\mathbb{C})$ and let $D \in \mathcal{L}(V)$ be the differentiation operator. Find a square root of $\mathbb{I} + D$.

Prob 3. Let V be a complex (finite-dimensional) vector space and let $T \in \mathcal{L}(V)$. Prove that there exist operators D and N in $\mathcal{L}(V)$ such that T = D + N, D is diagonalizable, N is nilpotent, and DN = ND.

Prob 4. Suppose that V is a complex vector space of dimension n. Let $T \in \mathcal{L}(V)$ be invertible. Let p denote the characteristic polynomial of T and let q denote the characteristic polynomial of T^{-1} . Prove that

$$q(z) = rac{z^n}{p(0)} p\left(rac{1}{z}
ight) \quad ext{for all} \quad z \in \mathbb{C} \setminus \{0\}.$$

Prob 5. Suppose the Jordan form of an operator $T \in \mathcal{L}(V)$ consists of Jordan blocks of sizes 3×3 , 4×4 , 1×1 , 5×5 , 2×2 , corresponding to eigenvalues λ_1 , λ_2 , λ_3 , λ_2 , λ_1 , respectively. Assuming that $\lambda_i \neq \lambda_j$ for $i \neq j$, find the minimal and the characteristic polynomial of T.