Math 110, Fall 2015.

Homework 11, due Nov 13.

Prob 1. Let T be a self-adjoint operator on a finite-dimensional inner product space (real or complex) such that $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ are the only eigenvalues of T. Prove that $p(T)=0$ where $p(\lambda):=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)$. Give a counterexample to this statement for an operator which is not self-adjoint.

Prob 2. Let T be a normal operator on a complex finite-dimensional inner product space V whose distinct eigenvalues are $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. For any $v \in V$ such that $\|v\|=1$, show that

$$
\langle T v, v\rangle=\sum_{j=1}^{k} a_{j} \lambda_{j}
$$

for some nonnegative numbers $a_{j}, j=1, \ldots, k$, that sum up to 1 .

Prob 3. Let $T \in \mathcal{L}(V)$. Show that

$$
\langle v, u\rangle_{T}:=\langle T v, u\rangle
$$

is an inner product on V if and only if T is positive (per our definition of positivity).

Prob 4. We already know (how?) that the operator $T=-D^{2}$ is nonnegative on the space $V:=\operatorname{span}(1, \cos x, \sin x)$ over \mathbb{R}, with the inner product

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

Find
(a) its square root operator \sqrt{T};
(b) an example of a self-adjoint operator $R \neq \sqrt{T}$ such that $R^{2}=T$;
(c) an example of a non-self-adjoint operator S such that $S^{*} S=T$.

Prob 5. Let T_{1} and T_{2} be normal operators on an n-dimensional inner product space V. Suppose both have n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Show that there is an isometry $S \in \mathcal{L}(V)$ such that $T_{1}=S^{*} T_{2} S$.

Prob 6. Find the singular values of the operator $T \in \mathcal{P}_{2}(\mathbb{C}): p(x) \mapsto x p^{\prime}(x)+2 x^{2} p^{\prime \prime}(x)$ if the inner product on $\mathcal{P}_{2}(\mathbb{C})$ is defined as

$$
\langle p, q\rangle:=\int_{-1}^{1} p(x) \overline{q(x)} d x
$$

