Math 110, Fall 2015. Homework 1, due Sept 2, 2015.

Problem 1. Suppose that $\{0, 1, x\}$ is a field with exactly three elements. What do the addition and multiplication table *have to be* in that case?

Based on the addition and multiplication tables you get, check that it is indeed a field. What is the natural way to think of this field (and x)?

Problem 2. Let $n \in \mathbb{N}$. Is \mathbb{Z}^n a vector space over \mathbb{Z} ? Over \mathbb{Q} ? Over \mathbb{R} ? Explain your answers.

Problem 3. Suppose $a \in \mathbb{F}$ (field), $v \in V$ (vector space over \mathbb{F}), and av = 0. Prove that a = 0 or v = 0.

Problem 4. Prove that any field \mathbb{F} is also a vector space over itself, with the field addition used as vector addition and the field multiplication used as scalar multiplication.

Problem 5. Prove that the set of all differential real-valued functions f on the interval (0,3) such that f'(1) = a is a subspace of $\mathbb{R}^{(0,3)}$ if and only if a = 0.