Math 110, Fall 2015.

Homework 1, due Sept 2, 2015.

Problem 1. Suppose that $\{0,1, x\}$ is a field with exactly three elements. What do the addition and multiplication table have to be in that case?

Based on the addition and multiplication tables you get, check that it is indeed a field. What is the natural way to think of this field (and $x)$?

Problem 2. Let $n \in \mathbb{N}$. Is \mathbb{Z}^{n} a vector space over \mathbb{Z} ? Over \mathbb{Q} ? Over \mathbb{R} ? Explain your answers.
Problem 3. Suppose $a \in \mathbb{F}$ (field), $v \in V$ (vector space over \mathbb{F}), and $a v=0$. Prove that $a=0$ or $v=0$.
Problem 4. Prove that any field \mathbb{F} is also a vector space over itself, with the field addition used as vector addition and the field multiplication used as scalar multiplication.

Problem 5. Prove that the set of all differential real-valued functions f on the interval $(0,3)$ such that $f^{\prime}(1)=a$ is a subspace of $\mathbb{R}^{(0,3)}$ if and only if $a=0$.

