Math 110, Fall 2015.

Homework 4, optionally due Sept 23.

Prob 1. Give, with proof, an example of three linear independent maps from $\mathcal{L}(V, W)$ where $V=W=\mathbb{R}^{2,2}$ or prove that no such example exists.

Prob 2. Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

$$
\text { range } S \subset \operatorname{null} T \text {. }
$$

Prove that $(S T)^{2}=0$.
Prob 3. Suppose $D \in \mathcal{L}\left(\mathcal{P}_{3}(\mathbb{R}), \mathcal{P}_{2}(\mathbb{R})\right)$ is the differentiation map defined by $D f=f^{\prime}$. Find a basis of $\mathcal{P}_{3}(\mathbb{R})$ and a basis of $\mathcal{P}_{2}(\mathbb{R})$ such that the matrix of D with respect to these bases is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

Prob 4. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that $T S$ is the identity map on W.

