Math 110, Fall 2015. Homework 4, optionally due Sept 23.

Prob 1. Give, with proof, an example of three linear independent maps from $\mathcal{L}(V, W)$ where $V = W = \mathbb{R}^{2,2}$ or prove that no such example exists.

Prob 2. Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

range $S \subset \operatorname{null} T$.

Prove that $(ST)^2 = 0$.

Prob 3. Suppose $D \in \mathcal{L}(\mathcal{P}_3(\mathbb{R}), \mathcal{P}_2(\mathbb{R}))$ is the differentiation map defined by Df = f'. Find a basis of $\mathcal{P}_3(\mathbb{R})$ and a basis of $\mathcal{P}_2(\mathbb{R})$ such that the matrix of D with respect to these bases is

1	0	0	0	
0	1	0	$\begin{array}{c} 0\\ 0\end{array}$	
0	0	1	0	

Prob 4. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.