Worksheet 11/18. Math 110, Fall 2015. Solution

These problems are intended as supplementary material to the homework exercises and will hopefully give you some more practice with actual examples. In particular, they may be easier/harder than homework. Send me an email if you have any questions!
Nilpotent Operators; Jordan Form
Throughout this worksheet V will always be a finite dimensional vector space over $F=\mathbb{C}$.
1.
a) Give two distinct examples of a operators $T_{1}, T_{2} \in L\left(\mathbb{C}^{3}\right)$ such that $\operatorname{dim} G\left(2, T_{1}\right)=2=$ $\operatorname{dim} G\left(2, T_{2}\right)$, and $\operatorname{dim} G\left(-1, T_{1}\right)=1=\operatorname{dim} G\left(-1, T_{2}\right)$.
b) Give an example of a non-diagonalisable operator $T \in L\left(\mathbb{C}^{4}\right)$ with distinct eigenvalues $\lambda=1,-1$ such that $\left(e_{1}, e_{1}+e_{2}\right)$ is a basis of $G(1, T)$ and $\left(e_{3}-e_{4}, e_{3}+e_{4}\right)$ is a basis of $G(-1, T)$.
c) Give an example of a nonzero nilpotent operator $T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4} ; v \mapsto A v$, where A is not an upper-triangular matrix and $T^{2}=0$.

Solution:

a) To define the operators T_{i} we need only give a 3×3 matrix A_{i} : then we set $T_{i}(x)=A_{i} x$. We let

$$
A_{1}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & -1
\end{array}\right] .
$$

b) Define $T \in L\left(\mathbb{C}^{4}\right)$ as follows:

$$
T\left(e_{1}\right)=2 e_{1}+e_{2}, T\left(e_{1}+e_{2}\right)=e_{1}+e_{2}, T\left(e_{3}-e_{4}\right)=-e_{3}+e_{4}, T\left(e_{3}+e_{4}\right)=-e_{3}-e_{4} .
$$

T is not diagonalisable since $(T-I)\left(e_{1}\right) \neq 0$, but $(T-I)^{2}\left(e_{1}\right)=0$. So, T admits generalised eigenvectors that are not eigenvectors.
c) Consider

$$
A=\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right]
$$

2. Let $\operatorname{dim} V=5$ and $T \in L(V)$. Suppose that T has three distinct eigenvalues λ, μ, ν, and that T is not diagonalisable. Prove that T admits a generalised eigenvector that is not an eigenvector.
Solution: Since T is not diagonalisable there is an eigenvalue, λ say, such that null $(T-\lambda) \neq$ null $(T-\lambda)^{2}$. Hence, T admits a generalised eigenvector that is not an eigenvector.
3. Let $\operatorname{dim} V=4$ and $T \in L(V)$ be such that $(T-2)^{2}(T-1)=0 \in L(V)$. Assume further that $\operatorname{dim} G(2, T)=2$. Prove that T admits exactly two distinct eigenvalues.
Solution: The polynomial relation on T gives that the allowed eigenvalues of T are $\lambda=1,2$. Since we know that $G(2, T) \neq 0$, this gives that 2 is an eigenvalue of T. However, V is a direct sum of its generalised eigenspaces, so that 1 must also be an eigenvalue.
4. Let $T \in L(V), \operatorname{dim} V=8$, be such that $\operatorname{dim} n u l l T^{4}=8$.
a) Suppose that dim null $T^{3}=6$. Prove that there exists linearly independent vectors $(v, u) \subset V$ such that $B=\left(v, T v, T^{2} v, T^{3} v, u, T u, T^{2} u, T^{3} u\right)$ is linearly independent (and hence a basis!). Write down that matrix of T with respect to B.
b) Is it possible that dim null $T^{3}=4$? Explain your answer.

Solution:

a) Let W be 2-dimensional subspace such that $W \oplus \operatorname{null}^{3}=$ null T^{4}. Choose a basis $(u, v) \subset W$. Then, $T^{4}(u)=0, T^{4}(v)=0$. We claim that the desired list is linearly independent: suppose that there is a linear relation

$$
a_{0} u+a_{1} T(u)+a_{2} T^{2}(u)+a_{3} T^{3}(u)+b_{0} v+b_{1} T(v)+b_{2} T^{2}(v)+b_{3} T^{3}(v)=0 .
$$

Applying T^{3} to this relation gives

$$
a_{0} T^{3}(u)+0+b_{0} T^{3}(v)=0 \Longrightarrow a_{0} u+b_{0} v \in \operatorname{null} T^{3} \cap W=\{0\},
$$

so that $a_{0} u+b_{0} v=0 \Longrightarrow a_{0}=b_{0}=0$. In a similar way, on can show that $a_{1}=a_{2}=a_{3}=b_{1}=b_{2}=b_{3}=0$.

The matrix has two 4×40-Jordan blocks.
b) No: since null $T^{3} \neq$ null $T^{2} \neq$ null T, the given dimension restriction on dim null T^{3} would imply that dim null T can be at most 2 . Let $W \subset V$ be such that $W \oplus$ null $T^{3}=$ null $T^{4}=$ V (so that $\operatorname{dim} W=4$). Take three linearly indpendent vectors $u, v, w \in W$. Then, ($T^{3}(u), T^{3}(v), T^{3}(w)$) is linearly independent: if we have a linear relation

$$
0=a T^{3}(u)+b T^{3}(v)+c T^{3}(w) \Longrightarrow 0=T^{3}(a u+b v+c w)
$$

and $a u+b v+c w \in W \cap$ null $T^{3}=\{0\}$, so that $a=b=c=0$. Moreover, $T\left(T^{3}(u)\right)=$ $T^{4}(u)=0$ so that $T^{3}(u) \in$ null T. Similarly, $T^{3}(v), T^{3}(w) \in$ null T. This contradicts that $\operatorname{dim} n u l l T \leq 2$.
5. Prove or give a counterexample:
a) Let $\operatorname{dim} V=6, T \in L(V)$. If $\operatorname{dim} G(0, T)=\operatorname{dim} G(1, T)=\operatorname{dim} G(2, T)=2$ then T is not diagonalisable.
b) Let $\operatorname{dim} V=8, T \in L(V)$. If dim null $T^{7}=7$ then T admits a nonzero eigenvalue.
c) Let $\operatorname{dim} V=8, T \in L(V)$. If $\operatorname{dim} n u l l T^{7}=8, \operatorname{dim} n u l l T^{6}=7$ then there exists three linearly independent eigenvectors for T.

Solution:

a) False: let $T \in L\left(\mathbb{C}^{6}\right)$ be given by a 6×6 matrix with $0,1,2$ appearing on the diagonal exactly twice, and 0 s everywhere else.
b) False: Take T defined by an 8×8 matrix that is a single 0 -Jordan block.
c) False: the information implies that null $T^{i-1} \neq$ null T^{i}, for each $i \leq 7$. Hence, dim null T can be at most 2 .

6*. (Harder) Consider the operator

$$
T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4} ; v \mapsto\left[\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] v
$$

Find a basis $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ consisting of generalised eigenvectors of T, and such that

$$
T\left(v_{1}\right)=v_{1}, T\left(v_{2}\right)=v_{2}+v_{1}, T\left(v_{3}\right)=v_{3}, T\left(v_{4}\right)=0 .
$$

