Worksheet 10/7. Math 110, Fall 2015.

These problems are intended as supplementary material to the homework exercises and will hopefully give you some more practice with actual examples. In particular, they may be easier/harder than homework. Remember that $F \in\{\mathbb{R}, \mathbb{C}\}$. Send me an email if you have any questions!

Dual things; annhilators

1. Consider the linear map

$$
T: F^{3} \rightarrow F^{4} ; v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
v_{1}-2 v_{3} \\
0 \\
v_{1}+v_{2}+v_{3} \\
3 v_{2}+v_{3}
\end{array}\right] .
$$

i) Let $S_{4} \subset F^{4}$ be the standard basis, and let $S_{4}^{\prime}=\left(y_{1}, \ldots, y_{4}\right)$ be the dual basis of S_{4}^{\prime}; similarly, let $S_{3} \subset F^{3}$ be the standard basis and let $S_{3}^{\prime}=\left(x_{1}, x_{2}, x_{3}\right)$ be the dual basis of S_{3}. What is $T^{\prime}\left(y_{i}\right)$, for each $i=1, \ldots, 4$? (Here $T^{\prime} \in L\left(\left(F^{4}\right)^{\prime},\left(F^{3}\right)^{\prime}\right)$ is the dual map of T)
ii) Consider the linear functional

$$
\alpha: F^{4} \rightarrow F ; u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right] \mapsto-u_{1}+3 u_{3}+u_{4} .
$$

Write α as a linear combination of S_{4}^{\prime}, ie, find scalars $a, b, c, d \in F$ such that

$$
\alpha=a y_{1}+b y_{2}+c y_{3}+d y_{4} .
$$

iii) Write $T^{\prime}(\alpha) \in\left(F^{3}\right)^{\prime}$ as a linear combination of S_{3}^{\prime}, ie, find scalars $p, q, r \in F$ such that

$$
T^{\prime}(\alpha)=p x_{1}+q x_{2}+r x_{3} .
$$

2. Do the same problems above (with appropriate adjustments!) for the linear map

$$
T: F^{3} \rightarrow F^{2} ; v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] \mapsto\left[\begin{array}{c}
v_{1}+v_{2}-v_{3} \\
v_{1}+2 v_{2}+3 v_{3}
\end{array}\right],
$$

and the linear functional

$$
\alpha: F^{2} \rightarrow F ; v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] \mapsto v_{1}-v_{2} .
$$

3. FACT: Elements of $\left(F^{n}\right)^{\prime}$ may be thought of as the vector space $M a t_{1, n}(F)$ of $1 \times n$ matrices (with entries in F). Make this identification.
i) Given a vector $v \in F^{n}$ and $A \in \operatorname{Mat}_{1, n}(F)$, verify that $A v$ can be considered as a scalar.
ii) Let $B=\left(\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}-1 \\ -3\end{array}\right]\right) \subset \mathbb{C}^{2}$, a basis of \mathbb{C}^{2}. What are the row-vectors (ie, $1 \times n$ matrices) $A_{1}, A_{2} \in \operatorname{Mat}_{1, n}(\mathbb{C})$ such that $\left(A_{1}, A_{2}\right)$ is the dual basis of B ? (Hint: what equations must A_{1} and A_{2} satisfy?)
iii) Write A_{1}, A_{2} as linear combinations of elements of the dual basis of S_{2} (the standard basis of \mathbb{C}^{2}). (You'll need to think which row vectors the elements of S_{2}^{\prime} correspond to...)
iv) Consider the linear map

$$
T: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} ; v \mapsto\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right] v
$$

If we denote $S_{2}^{\prime}=\left(x_{1}, x_{2}\right)$, then write $T^{\prime}\left(x_{1}\right)$ and $T^{\prime}\left(x_{2}\right)$ as linear combinations of S_{2}^{\prime}. Can you find a matrix $A \in M a t_{2}(\mathbb{C})$ such that

$$
T^{\prime}:\left(\mathbb{C}^{2}\right)^{\prime} \rightarrow\left(\mathbb{C}^{2}\right)^{\prime} ; \alpha \mapsto \alpha A ?
$$

Here we are considering elements of $\left(\mathbb{C}^{2}\right)^{\prime}$ as row-vectors. Is the matrix A related to the matrix defining T in any way?
4. Let
this is a subspace of F^{4}.
i) Determine a basis $B=\left(u_{1}, u_{2}\right)$ of U. Extend this basis to a basis C of F^{4}.
ii) Let $C^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{4}\right)$ be the dual basis of C. Write α_{i} as a linear combination of the elements of $S_{4}^{\prime}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ (the dual basis of the standard basis of F^{4}).
iii) Prove that $\left(\alpha_{3}, \alpha_{4}\right)$ is a basis of U°, the annhilator of U. (Hint: you don't need to show that these functionals span U° !)
iv) Prove that $x_{1}+x_{4}, x_{2}-x_{3} \in U^{\circ}$.
v) (Harder) Suppose that A is an $m \times n$ matrix with entries in F. Suppose that $U=\operatorname{null}(A) \subset$ F^{n}. Can you find a spanning list of U° ? Can you find a basis of U° ?

