Math 110, Fall 2014. The Spectral Theorems

Important things to know:

1. definition of a Hermitian/Euclidean inner product
2. definition of Hermitian/Euclidean space (V,\langle,$\rangle)$
3. definition of an orthonormal basis in a Hermitian/Euclidean space
4. orthonormal bases exist: this uses Gram-Schmidt process; start with any basis of V and apply Gram-Schmidt
5. Cauchy-Schwart inequality; Pythagoras' Theorem
6. definition of the adjoint T^{+}of an operator $T: V \rightarrow V:$ the defining property of T^{+}is that $\left\langle T^{+}(u), v\right\rangle=\langle u, T(v)\rangle$, for all $u, v \in V$.
7. if the matrix of T with respect to an orthonormal basis is A, then the matrix of T^{+}with respect to the same orthonormal basis is \bar{A}^{t}.
8. definition of normal/Hermitian/symmetric/anti-Hermitian/anti-symmetric/unitary/orthogonal operators; awareness that all of these concepts depend on the given Hermitian/Euclidean inner product \langle,$\rangle .$
9. orthogonal/unitary/Hermitian/symmetric/anti-Hermitian/anti-symmetric \Rightarrow normal
10. The Complex Spectral Theorem (CST): Let $(V,\langle\rangle$,$) be a Hermitian space, T: V \rightarrow V$ an operator. Then, T is normal if and only if V admits an orthonormal basis consisting of eigenvectors of T.
11. Consequences of CST: if a matrix A is normal (so $A \bar{A}^{t}=\bar{A}^{t} A$) then there exists unitary P such that $P^{-1} A P=D$ is diagonal, ie, normal if and only if unitarily diagonalisable
12. Orthogonal Diagonalisation of (anti-)Hermitian Forms: if $H: \mathbb{C}^{n} \rightarrow \mathbb{C} ; z \mapsto \sum a_{i j} \bar{z}_{i} z_{j}$ is a Hermitian form (resp. anti-Hermitian form) then there exists a unitary change of coordinates $z=P w$ (with P unitary matrix) such that $H(w)=\lambda_{1}\left|w_{1}\right|^{2}+\ldots+\lambda_{n}\left|w_{n}\right|^{2}$, (resp. $H(w)=i \lambda_{1}\left|w_{1}\right|^{2}+\ldots+i \lambda_{n}\left|w_{n}\right|^{2}$) with $\lambda_{1} \geq \cdots \geq \lambda_{n}$.
13. The Real Spectral Theorem and its consequences: any symmetric matrix is orthogonally diagonalisable; if A is an orthogonal matrix then there exists orthogonal P such that $P^{-1} A P$ contains 1×1 blocks on the diagonal and 2×2 blocks of the form $\left[\begin{array}{cc}\alpha & -\beta \\ \beta & \alpha\end{array}\right]$. Moreover, these 2×2 blocks correspond to complex (non-real) roots $\alpha \pm i \beta$ of the characteristic polynomial of A.
