Math 110, Fall 2014. The Spectral Theorems

Important things to know:

- 1. definition of a Hermitian/Euclidean inner product
- 2. definition of Hermitian/Euclidean space (V, \langle, \rangle)
- 3. definition of an orthonormal basis in a Hermitian/Euclidean space
- 4. orthonormal bases exist: this uses Gram-Schmidt process; start with any basis of V and apply Gram-Schmidt
- 5. Cauchy-Schwart inequality; Pythagoras' Theorem
- 6. definition of the adjoint T^+ of an operator $T : V \to V$: the defining property of T^+ is that $\langle T^+(u), v \rangle = \langle u, T(v) \rangle$, for all $u, v \in V$.
- 7. if the matrix of T with respect to an orthonormal basis is A, then the matrix of T^+ with respect to the same orthonormal basis is \overline{A}^t .
- definition of normal/Hermitian/symmetric/anti-Hermitian/anti-symmetric/unitary/orthogonal operators; awareness that all of these concepts depend on the given Hermitian/Euclidean inner product (,).
- 9. orthogonal/unitary/Hermitian/symmetric/anti-Hermitian/anti-symmetric \Rightarrow normal
- 10. The Complex Spectral Theorem (CST): Let (V, \langle, \rangle) be a Hermitian space, $T : V \to V$ an operator. Then, T is normal if and only if V admits an orthonormal basis consisting of eigenvectors of T.
- 11. Consequences of CST: if a matrix A is normal (so $A\overline{A}^t = \overline{A}^t A$) then there exists unitary P such that $P^{-1}AP = D$ is diagonal, ie, normal if and only if unitarily diagonalisable
- Orthogonal Diagonalisation of (anti-)Hermitian Forms: if H : Cⁿ → C ; z ↦ ∑a_{ij}z_iz_j is a Hermitian form (resp. anti-Hermitian form) then there exists a unitary change of coordinates z = Pw (with P unitary matrix) such that H(w) = λ₁|w₁|² + ... + λ_n|w_n|², (resp. H(w) = iλ₁|w₁|² + ... + iλ_n|w_n|²) with λ₁ ≥ ··· ≥ λ_n.
- 13. The Real Spectral Theorem and its consequences: any symmetric matrix is orthogonally diagonalisable; if A is an orthogonal matrix then there exists orthogonal P such that $P^{-1}AP$ contains 1×1 blocks on the diagonal and 2×2 blocks of the form $\begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix}$. Moreover, these 2×2 blocks correspond to complex (non-real) roots $\alpha \pm i\beta$ of the characteristic polynomial of A.