Quiz 9. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Let (V, \langle, \rangle) be a Hermitian space, $T: V \to V$ an anti-Hermitian operator on V. Suppose that $v \in V$ is an eigenvector of T with eigenvalue λ . Prove that $U = \{u \in V \mid \langle u, v \rangle = 0\}$ has the following property: if $u \in U$ then $T(u) \in U$.

Solution: let $u \in U$, so that $\langle u, v \rangle = 0 = 0$. To show that $T(u) \in U$ we must show that $\langle T(u), v \rangle = 0$: now, we have

$$\langle T(u), v \rangle = \langle u, T^+(v) \rangle = \langle u, -T(v) \rangle = \langle u, -\lambda v \rangle = -\lambda \langle u, v \rangle = 0,$$

where we have used that $T=-T^+$, since T is assumed anti-Hermitian.