Quiz 9. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Let $(V,\langle\rangle$,$) be a Hermitian space, T: V \rightarrow V$ an anti-Hermitian operator on V. Suppose that $v \in V$ is an eigenvector of T with eigenvalue λ. Prove that $U=\{u \in V \mid\langle u, v\rangle=$ $0\}$ has the following property: if $u \in U$ then $T(u) \in U$.

Solution: let $u \in U$, so that $\langle u, v\rangle=0=0$. To show that $T(u) \in U$ we must show that $\langle T(u), v\rangle=0$: now, we have

$$
\langle T(u), v\rangle=\left\langle u, T^{+}(v)\right\rangle=\langle u,-T(v)\rangle=\langle u,-\lambda v\rangle=-\lambda\langle u, v\rangle=0
$$

where we have used that $T=-T^{+}$, since T is assumed anti-Hermitian.

