Quiz 8. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Determine if the there exists a linear change of coordinates transforming the sesquilinear form $S=-\bar{z}_{1} z_{1}+2 i \bar{z}_{1} z_{2}-2 i \bar{z}_{2} z_{1}$ into $T=-2 \bar{z}_{1} z_{1}-(1-i) \bar{z}_{1} z_{2}-(1+i) \bar{z}_{2} z_{1}$.

Solution: The coefficient matrices of the given forms are

$$
A=\left[\begin{array}{cc}
-1 & 2 i \\
-2 i & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & -(1-i) \\
-(1+i) & 0
\end{array}\right]
$$

Since $A=\bar{A}^{t}$ and $B=\bar{B}^{t}$, the given forms are Hermitian. Let's compute the inertia indices of both; if they are the same then S and T can be transformed into each other by a linear change of coordinates.

For S we observe that $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ satisfies $S\left(e_{1}\right)=-1$; similarly, $T\left(\frac{1}{\sqrt{2}} e_{1}\right)=-1$. Hence, $p \geq 1$ for each of S and T. Now, we consider the subspaces

$$
\begin{gathered}
\left\{\left.x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, 0={\overline{e_{1}}}^{t} A x=-x_{1}+2 i x_{2}\right\}=\operatorname{span}\left(\left[\begin{array}{c}
2 i \\
1
\end{array}\right]\right) \\
\left\{\left.x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \right\rvert\, 0={\overline{e_{1}}}^{t} B x=-2 x_{1}-(1-i) x_{2}\right\}=\operatorname{span}\left(\left[\begin{array}{c}
(1-i) / 2 \\
-1
\end{array}\right]\right)
\end{gathered}
$$

Then, $S\left([2 i 1]^{t}\right)=4$, so that $(p, q)=(1,1)$ for S, and $T\left([(1-i) / 2-1]^{t}\right)=1$, so that $(p, q)=(1,1)$ for T. Hence, there does exist a linear change of coordinates transforming S into T.

