Quiz 7. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Determine the inertia indices (p, q) of the following quadratic form

$$
Q=-x_{1}^{2}+2 x_{1} x_{2}-x_{2} x_{3}+2 x_{3}^{2}
$$

Solution: Completing the square gives

$$
Q=-\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-\frac{1}{2} x_{3}\right)^{2}+\frac{7}{4} x_{3}^{2}
$$

and letting

$$
u_{1}=x_{1}-x_{2}, \quad u_{2}=x_{2}-\frac{1}{2} x_{3}, \quad u_{3}=\frac{\sqrt{7}}{2} x_{3}
$$

gives

$$
Q=-u_{1}^{2}+u_{2}^{2}+u_{3}^{2}
$$

Thus, we have

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 / 2 \\
0 & 0 & \sqrt{7} / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Since this last matrix is invertible we find that $(p, q)=(2,1)$.

