Quiz 7. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Determine the inertia indices (p, q) of the following quadratic form

$$
Q=2 x_{1}^{2}+2 x_{1} x_{3}-x_{2} x_{3}+x_{2}^{2} .
$$

Solution: Completing the square gives

$$
Q=2\left(x_{1}+\frac{1}{2} x_{3}\right)^{2}+\left(x_{2}-\frac{1}{2} x_{3}\right)^{2}-\frac{3}{4} x_{3}^{2}
$$

So that if we set

$$
u_{1}=\sqrt{2}\left(x_{1}+\frac{1}{2} x_{3}\right), \quad u_{2}=x_{2}-\frac{1}{2} x_{3}, \quad u_{3}=\frac{\sqrt{3}}{2} x_{3},
$$

then

$$
Q=u_{1}^{2}+u_{2}^{2}-u_{3}^{2} .
$$

Moreover, the above defines a change of coordinates since

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{2} & 0 & 1 / \sqrt{2} \\
0 & 1 & -1 / 2 \\
0 & 0 & \sqrt{3} / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

and the given matrix is invertible. Hence, $(p, q)=(2,1)$.

