Quiz 6. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Consider the following matrix

$$
A=\left[\begin{array}{cc}
3 & -2 \\
1 & 2
\end{array}\right]
$$

Determine a lower triangular invertible matrix L, an upper triangular invertible matrix U and a permutation matrix P such that $A=L P U$.

Solution: Row-reduce A using only row scalings and addition of rows to rows below (so no swaps; only 'downward row-reduction') to obtain

$$
A \sim X=\left[\begin{array}{cc}
1 & -2 / 3 \\
0 & 1
\end{array}\right]=L^{-1} A
$$

Then, column-reduce X using only row scalings and addition of columns to proceeding columns to obtain

$$
X \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=P=X U^{-1}
$$

Hence, $L=A X^{-1}$ and $U=P^{-1} X=X$. Thus,

$$
L=\left[\begin{array}{cc}
3 & 0 \\
1 & 8 / 3
\end{array}\right], \quad P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad U=\left[\begin{array}{cc}
1 & -2 / 3 \\
0 & 1
\end{array}\right]
$$

