Quiz 3. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Let $M=\{2 \times 2$ matrices with \mathbb{R} entries $\}$, a vector space over \mathbb{R}, and let $A=\{C \in$ $\left.M \mid C^{t}=-C\right\} \subset M$ be the subspace of antisymmetric matrices. Here we have used the notion of the transpose of a matrix:

$$
C=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Longrightarrow C^{t}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Find a basis B of A, taking care to prove that B is indeed a basis.
Solution: The given condition $C^{t}=-C$ implies that $C \in A$ precisely when

$$
C=\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]
$$

Hence, we have that the set $\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$ is a basis, since this set spans A and the (only) vector is nonzero, hence linearly independent.

