Quiz 3. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Let $M=\{2 \times 2$ matrices with \mathbb{R} entries $\}$, a vector space over \mathbb{R}, and let $S=\{A \in$ $\left.M \mid A^{t}=A\right\} \subset M$ be the subspace of symmetric matrices. Here we have used the notion of the transpose of a matrix:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \Longrightarrow A^{t}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

Find a basis B of S, taking care to prove that B is indeed a basis.
Solution: Using the condition $A^{t}=A$, we see that $A \in M$ precisely when

$$
A=\left[\begin{array}{ll}
a & b \\
b & d
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

Now, the set $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ is linearly independent: if there are $c_{1}, c_{2}, c_{3} \in$ \mathbb{R} such that

$$
c_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c_{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c_{3}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
c_{1} & c_{2} \\
c_{2} & c_{3}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

then we must have $c_{1}=c_{2}=c_{3}=0$. Hence, the given set is a basis.

