Quiz 11. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Consider the following permutation matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Let $X=-I_{3}-2 A+2 A^{2}$, where I_{3} is the 3×3 identity matrix. Determine the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{C}$ and the corresponding eigenspaces.

Solution: The given matrix satisfies $A^{3}=I_{3}$ (notice that A is a permutation matrix). If λ is an eigenvalue of A and $A v=\lambda v$, with $v \neq 0$, then

$$
X v=\left(-I_{3}-2 A+2 A^{2}\right) v=-v-2 A v+2 A^{2} v=\left(-1-2 \lambda+2 \lambda^{2}\right) v .
$$

Here we have used the fact: if $A v=\lambda v$, with $v \neq 0$, then $A^{n} v=\lambda^{n} v$.
Hence, if λ is an eigenvalue of A then $\left(-1-2 \lambda+2 \lambda^{2}\right)$ is an eigenvalue of X. You can check that A has characteristic polynomial $-\lambda^{3}+1$, so it's eigenvalues are $\lambda_{1}=1, \lambda_{2}=$ $e^{2 \pi i / 3}, \lambda_{3}=e^{4 \pi i / 3}$ (the cube roots of unity). Also, you can show that (by row-reduction)

$$
\begin{aligned}
\operatorname{nul}\left(A-\lambda_{1} I_{3}\right)= & \operatorname{span}\left((1,1,1)^{t}\right), \operatorname{nul}\left(A-\lambda_{2} I_{3}\right)=\operatorname{span}\left(\left(\lambda_{1}, \lambda_{1}^{2}, 1\right)^{t}\right), \\
& \operatorname{nul}\left(A-\lambda_{2} I_{3}\right)=\operatorname{span}\left(\left(\lambda_{2}, \lambda_{2}^{2}, 1\right)^{t}\right) .
\end{aligned}
$$

Hence, X must have the eigenvalues $-1-2 \lambda_{i}+2 \lambda_{i}^{2}$, for $i=1,2,3$, and with the same eigenspaces as above.

