Quiz 11. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Consider the following permutation matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Let $X=-I_3+2A-2A^2$, where I_3 is the 3×3 identity matrix. Determine the eigenvalues $\lambda_1,\lambda_2,\lambda_3\in\mathbb{C}$ and the corresponding eigenspaces.

Solution: The given matrix satisfies $A^3 = I_3$ (notice that A is a permutation matrix). If λ is an eigenvalue of A and $Av = \lambda v$, with $v \neq 0$, then

$$Xv = (-I_3 + 2A - 2A^2)v = -v + 2Av - 2A^2v = (-1 + 2\lambda - 2\lambda^2)v.$$

Here we have used the fact: if $Av = \lambda v$, with $v \neq 0$, then $A^n v = \lambda^n v$.

Hence, if λ is an eigenvalue of A then $(-1+2\lambda-2\lambda^2)$ is an eigenvalue of X. You can check that A has characteristic polynomial $-\lambda^3+1$, so it's eigenvalues are $\lambda_1=1,\lambda_2=e^{2\pi i/3}$, $\lambda_3=e^{4\pi i/3}$ (the cube roots of unity). Also, you can show that (by row-reduction)

$$\begin{split} \mathsf{nul}\,(A - \lambda_1 I_3) &= \mathsf{span}((1,1,1)^t), \ \mathsf{nul}\,(A - \lambda_2 I_3) = \mathsf{span}((\lambda_1,\lambda_1^2,1)^t), \\ \mathsf{nul}\,(A - \lambda_2 I_3) &= \mathsf{span}((\lambda_2,\lambda_2^2,1)^t). \end{split}$$

Hence, X must have the eigenvalues $-1+2\lambda_i-2\lambda_i^2$, for i=1,2,3, and with the same eigenspaces as above.