Quiz 10. Discussion Section 103. Math 110 Fall 2014.

Name:

1. Consider the following permutation matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The matrix A defines orthogonal/unitary (you don't have to show this) transformations

$$
T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}, x \mapsto A x, \quad S: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4}, x \mapsto A x
$$

What are the real/complex normal forms of T, S ? That is, determine matrices B, C, such that

$$
U^{t} A U=B, \quad \bar{V}^{t} A V=C
$$

where U, V are orthogonal/unitary matrices. (Hint: use the real spectral theorem)
Solution: Since S is a unitary operator (its matrix with respect to the (orthonormal) standard basis is A and $A^{-1}=\bar{A}^{t}$) it is diagonalisable - hence, we need to determine the eigenvalues of A. The characteristic polynomial of A is $\left(\lambda^{3}-1\right)(\lambda-1)=(\lambda-1)^{2}(\lambda-$ $\mu)\left(\lambda-\mu^{2}\right)$, where $\mu=e^{2 \pi i / 3}$ is the cube root of unity with positive imaginary part. Hence, we take (put a 0 everywhere left blank)

$$
C=\left[\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & \mu & \\
& & & \mu^{2}
\end{array}\right]
$$

T is an orthogonal operator (because its matrix with respect to the (orthonormal) standard basis is A and $A^{-1}=A^{t}$) we can use the real spectral theorem to determine the normal form for T. This depends on finding the eigenvalues of A. As discovered above, they are $1,1, \mu, \mu^{2}$ - notice that $\mu^{2}=\bar{\mu}$ (because $\mu^{2}=\mu^{-1}=\bar{\mu} /|\mu|^{2}=\bar{\mu}$). Hence, the normal form we take for B is

$$
B=\left[\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \alpha & -\beta \\
& & \beta & \alpha
\end{array}\right]
$$

where $\alpha=\operatorname{Re}(\mu), \beta=\operatorname{Im}(\mu)$. Since $\mu=\cos (2 \pi / 3)+i \sin (2 \pi / 3)=-\frac{1}{2}(1+\sqrt{3} i)$, we have $\alpha=-1 / 2, \beta=\sqrt{3} / 2$.

