Quiz 1. Discussion Section 106. Math 110 Fall 2014.

Name: Solution

1. Express all of the roots of the equation $w^{2}+2 w+1-\frac{\sqrt{-1}}{4}=0$ in the form $a+b \sqrt{-1}$.

Solution: We use the quadratic formula to obtain the roots

$$
w=\frac{1}{2}(-2 \pm \sqrt{4-4(1-\sqrt{-1} / 4)})=\frac{1}{2}(-2 \pm \sqrt{\sqrt{-1}})
$$

Hence, we need to find a square root of $a=\sqrt{-1}$: write $a=e^{\sqrt{-1} \pi / 2}$. Then, a square root $b=r e^{\sqrt{-1} \theta}(r \geq 0, \theta \in[0,2 \pi))$ of a satisfies $b^{2}=a$, so that

$$
r^{2}=1, \quad 2 \theta=\pi / 2
$$

Hence, we can take $r=1, \theta=\pi / 4$, so that $b=e^{\sqrt{-1} \pi / 4}=\frac{1}{\sqrt{2}}+\frac{\sqrt{-1}}{\sqrt{2}}$. Hence, the roots are

$$
\begin{gathered}
w=-1 \pm \frac{1}{\sqrt{2}}(1+\sqrt{-1}) \\
\Longrightarrow w \in\{(-1+1 / 2 \sqrt{2})+\sqrt{-1} / 2 \sqrt{2},(-1-1 / 2 \sqrt{2})-\sqrt{-1} / 2 \sqrt{2}\} .
\end{gathered}
$$

