Quiz 1. Discussion Section 103. Math 110 Fall 2014.

Name: Solution

1. Express all of the roots of the equation $w^{2}-\sqrt{-4} w-\left(1+\frac{\sqrt{-1}}{4}\right)=0$ in the form $a+b \sqrt{-1}$.
Solution: We use that quadratic formula to obtain the roots

$$
w=\frac{1}{2}(\sqrt{-4}+\sqrt{-4+4(1+\sqrt{-1} / 4)})=\frac{1}{2}(\sqrt{-4}+\sqrt{\sqrt{-1}}) .
$$

We need to obtain a square root of the complex number $a=\sqrt{-1}$: in polar form we can write $a=e^{\sqrt{-1} \pi / 2}$. where $r \geq 0, \theta \in[0,2 \pi)$. A square root $b=r e^{\sqrt{-1} \theta}$ of a must satisfy $b^{2}=a$. Hence, we have

$$
r^{2}=1, \quad 2 \theta=\pi / 2
$$

and we can take $b=e^{\sqrt{-1} \pi / 4}=\frac{1}{\sqrt{2}}+\frac{\sqrt{-1}}{\sqrt{2}}$. Hence, we have

$$
w \in\left\{\frac{1}{2 \sqrt{2}}+\sqrt{-1}\left(1+\frac{1}{2 \sqrt{2}}\right),-\frac{1}{2 \sqrt{2}}+\sqrt{-1}\left(1-\frac{1}{2 \sqrt{2}}\right)\right\}
$$

