Math 110, Fall 2014. Quadratic/Hermitian Form Practice Problems

1. Consider the following Hermitian forms $H: \mathbb{C}^{2} \rightarrow \mathbb{R}$ (where \mathbb{C}^{2} is the standard Hermitian space, with Hermitian inner product $\bar{z}_{1} z_{1}+\bar{z}_{2} z_{2}$)

$$
\begin{gathered}
H(z)=2 i \bar{z}_{1} z_{2}-2 i \bar{z}_{2} z_{1}, \quad H(z)=-\left|z_{1}\right|^{2}-i \bar{z}_{1} z_{2}+i \bar{z}_{2} z_{1}+\left|z_{1}\right|^{2} \\
H(z)=\left|z_{1}\right|^{2}+(1-i) \bar{z}_{1} z_{2}+(1+i) \bar{z}_{2} z_{1}+\left|z_{2}\right|^{2}
\end{gathered}
$$

Answer the following questions:
(a) Determine the normal form of H up to a linear change of coordinates.
(b) Determine the normal form of H up to a unitary change of coordinates.
(c) Determine a unitary change of coordinates $z=P w$ such that $H(w)=\lambda_{1}\left|w_{1}\right|^{2}+$ $\lambda_{2}\left|w_{2}\right|^{2}$, with $\lambda_{1} \geq \lambda_{2}$.
(d) For which of the above Hermitian forms does there exist a linear change of coordinates transforming one into the other?
2. Consider the following quadratic forms $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$, where \mathbb{R}^{3} is the standard Euclidean space,

$$
\begin{gathered}
Q(x)=-x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{3}-x_{3}^{2}, \quad Q(x)=-2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2}^{2} \\
Q(x)=x_{1}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}+x_{3}^{2}
\end{gathered}
$$

(a) Determine the normal form of Q up to a linear change of coordinates.
(b) Determine the normal form of the first two quadratic forms Q up to a orthogonal change of coordinates.
(c) Determine an orthogonal change of coordinates $x=P u$ such that the first quadratic form Q takes the form $Q(u)=\lambda_{1} u_{1}^{2}+\lambda_{2} u_{2}^{2}+\lambda_{3} u_{3}^{2}$.
(d) Which of the following hypersurfaces in \mathbb{R}^{3} can be transformed into each other by a linear change of coordinates?

$$
\begin{gathered}
A=\left\{x \mid-x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{3}-x_{3}^{2}=1\right\}, \quad B=\left\{x \mid-2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2}^{2}=-1\right\}, \\
C=\left\{x \mid x_{1}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}+x_{3}^{2}=1\right\}
\end{gathered}
$$

