
Math 110, Fall 2014. Quadratic Forms

Consider the quadratic form

Q : Rn → R ; x 7→
∑

1≤i≤j≤n

aijxixj .

It is a Theorem that we can find a change of coordinates x = Cu such that, in this new
coordinate system,

Q(u) = λ1u
2
1 + ... + λp+qu

2
p+q,

where λ1 ≥ λ2 ≥ · · · ≥ λp > 0, and 0 > λp+1 ≥ · · · ≥ λp+q.

We can go one better than what we have above: we can find a change of coordinates x = Dz
such that, in this new coordinate system,

Q(z) = z21 + ... + z2p − z2p+1 − ...− z2p+q.

We call (p, q) the inertia indices. They are defined in a more intrinsic way: we have

p = max{dimU | U ⊂ Rn is a subspace and Q > 0 on U − {0}},

q = max{dimU | U ⊂ Rn is a subspace and −Q > 0 on U − {0}},

For example,

1. Consider the quadratic form Q(x) = x21 − 2x1x2 + x23 on R3. Let’s determine the inertia
indices: completing the square, we see that

Q = (x1 − x2)2 − x22 + x23 .

Thus, we see by inspection that Q is positive on the subspace


x0
y

 | x , y ∈ R

, so

that p ≥ 2. We must also have p ≤ 3 (since Q is a form on R3). As Q(e1 + e2) =
(1 − 1)2 − 12 + 02 = −1 < 0, we do not have that Q > 0 everywhere away from the
origin, so that p < 3 and we must have p = 2 (here e1, e2 are standard basis vectors in
R3).

Similarly, we see that−Q is positive away from the origin on the subspace


xx

0

 | x ∈ R

.

Hence, q ≥ 1. As p + q ≤ 3, we must have q = 1.

2. Consider the quadratic form Q(x) = 2x1x2 on R3. Completing the square we find

Q =
1

2

(
(x1 + x2)2 − (x1 − x2)2

)

By inspection, we see that Q is positive on the subspace


xx

0

 | x ∈ R

. Thus, p ≥ 1.

Since Q(e1) = 0, Q is not positive everywhere away from the origin so that p < 3 (as
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argued above). Suppose that Q is positive on a subspace U with dimU = 2, and let
u, v ∈ U be a basis (we are going to show this is impossible). We have

u =

u1u2
u3

 , v =

v1v2
v3

 .

Thus, for every λ,µ (so that (λ,µ) 6= (0, 0)), we have Q(λu + µv) > 0. That is,

Q(λu + µv) = 2(λu1 + µv1)(λu2 + µv2) > 0.

In particular, note that Q would be positive on the subspace span(e1, e2) ⊂ R3. However,
Q(e1) = 0 so this does not hold. Hence, it can’t be the case that Q is positive on a
subspace U with dimU = 2, and therefore, p = 1.

Note that −Q is positive on the subspace


 x
−x
0

 | x ∈ R

, so that q ≥ 1. As p+q ≤ 3

we must have q ≤ 2. In a similar way to our determination of p, we must have p 6= 2 (if
U was a two dimensional subspace on which −Q is positive, then −Q would be positive
on span(e1, e2)). Hence, q = 1.

We can determine that p, q 6= 2 using the concept of the rank of a quadratic form: given the
quadratic form Q, we first determine the coefficient matrix of Q; recall that this is the matrix
B such that the symmetric bilinear form Q : Rn×Rn → R (using Givental’s abuse of notation)
takes the form Q(x , y) = x tBy , and the quadratic form (careful!) takes the form Q(x) = x tBx .
In general, the ij term of the coefficient matrix B of the quadratic form Q =

∑
1≤i≤j≤n aijxixj

is

bij =

{
aij , when i = j ,
1
2aij , when i 6= j .

.

The matrices of the examples above are

B =

 1 −1 0
−1 0 0
0 0 1

 , B =

0 1 0
1 0 0
0 0 0


The rank of the quadratic form is then the rank of the matrix B. The rank of a quadratic form
can be intepreted as

rankQ = max{U ⊂ Rn | U is a subspace and Q = 0 on U}.

The main result is that p + q = rankB; this is in Givental’s notes, although perhaps not
explicitly stated. Hence, for the second example above we can see that rankB = 2 so that
p + q = 2, and since it is not too hard to show that p, q ≥ 1, we must have p = q = 1.

Finding ‘orthogonal’ bases of Q:

!! BEWARE !!: these bases are not ‘orthogonal’ in the usual sense (ie, with respect
to the dot product on Rn)

When you complete the square for Q, and when p + q = n, you are, in fact, determining bases
(v1, ... , vn) of Rn such that Q(vi , vj) = 0, for i 6= j . However, sometimes care is needed!
This is best illustrated by some examples:
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1. Consider the quadratic form Q = x21 − 2x1x3 + 4x2x3 − x22 . Completing the square gives

Q = (x1 − x3)2 − x22 + 4x2x3 − x23 = (x1 − x3)2 − (x2 − 2x3)2 + 3x23

If we set
u1 = x1 − x3, u2 = x2 − 2x3, u3 = x3,

then Q(u) = u21 − u22 + 3u23 . Note that the above equations can be written in matrix
form as u1u2

u3

 =

1 0 −1
0 1 −2
0 0 1

x1x2
x3

 .

Denoting the matrix A−1, we find its inverse is

A =

1 0 1
0 1 2
0 0 1

 .

Hence, we see that, for every u ∈ R3

utAtBAu = ut

1 0 0
0 −1 0
0 0 3

 u.

Here, B =

 1 0 −1
0 −1 2
−1 2 0

 is the coefficient matrix of Q (with respect to the standard

coordinates). The above formula thus implies that AtBA is a diagonal matrix, so that
the columns of A are a Q-orthogonal basis (this is discussed in Givental’s notes).

Note: the columns of A are NOT orthogonal with respect to the usual notion of
orthogonality (via the dot product on R3); but this is OK!

Since p + q = 3, we could have obtained a matrix A such that AtBA is diagonal as
follows: let U+ be a subspace such that dimU+ = p and Q > 0 on U+; similarly, let U−
be a subspace such that dimU− = q and −Q > 0 on U−. We see that we can take

U+ =


x1x2
x3

 | x2 − 2x3 = 0

 =


 x

2y
y

 | x , y ∈ R


U− =


x1x2
x3

 | x1 − x3 = 0, x3 = 0

 =


0
x
0

 | x ∈ R

 .

Now, we find a basis of U+ and U− as follows: since dimU− = 1 we just take any
nonzero vector in U−; for example e2. For U+, choose v1 ∈ U+ such that Q(v1) > 0,
say v1 = e1. Then, consider those elements v ∈ U+ satisfying

0 = Q(v , v1) = x1 − x3.
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Thus, we want an element in U+ satisfying both x2 − 2x3 = 0 and x1 − x3 = 0; this is

precisely the subspace


 x

2x
x

 | x ∈ R

. Thus, we can recover the columns of A above

in this way.

2. Consider the quadratic form Q = 4x1x2 + 4x1x3 = 4x1(x2 + x3). We complete the square
to get

Q = (x1 + (x2 + x3))2 − (x1 − (x2 + x3))2.

Hence, we can set
u1 = x1 + x2 + x3, u2 = x1 − x2 − x3,

but what about u3? It’s not so clear how to proceed...

We need to proceed as we did in the previous example: let’s find subspaces U+, U− as
above. First observe that the rank of Q is 2 (by looking at the coefficient matrix of Q).
Thus, we firstly need to take a basis of kerQ. It can be seen that this is

kerQ = nul

0 2 2
2 0 0
2 0 0

 =


 0

x
−x

 | x ∈ R

 .

The remaining basis vectors must be Q-orthogonal to kerQ; so we must ensure that
vectors in U+ and U− are Q-orthogonal to kerQ. Any such vector x must satisfy 2x2 −
2x3 = 0, because we require Q(x , e2 − e3) = 0. Then, we can take

U+ =


x1x2
x3

 | x1 = x2 + x3, x2 − x3 = 0 ∈ R

 =


2x
x
x

 | x ∈ R


U− =


x1x2
x3

 | x1 = −(x2 + x3), x2 − x3 = 0 ∈ R

 =


−2x

x
x

 | x ∈ R


So, if we take

A =

2 −2 0
1 1 1
1 1 −1

 ,

then

AtBA =

16 0 0
0 −16 0
0 0 0


3. Consider the form Q = x1x2+x1x3+x2x3. For this example, we need a different approach:

we follow the (implicit) algorithm discussed in Givental’s notes. First, we observe that
the coefficient matrix of Q is

B =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


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