Math 110, Fall 2014. Quadratic Forms

Consider the quadratic form

$$
Q: \mathbb{R}^{n} \rightarrow \mathbb{R} ; \underline{x} \mapsto \sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j} .
$$

It is a Theorem that we can find a change of coordinates $\underline{x}=C \underline{u}$ such that, in this new coordinate system,

$$
Q(\underline{u})=\lambda_{1} u_{1}^{2}+\ldots+\lambda_{p+q} u_{p+q}^{2},
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p}>0$, and $0>\lambda_{p+1} \geq \cdots \geq \lambda_{p+q}$.
We can go one better than what we have above: we can find a change of coordinates $x=D z$ such that, in this new coordinate system,

$$
Q(\underline{z})=z_{1}^{2}+\ldots+z_{p}^{2}-z_{p+1}^{2}-\ldots-z_{p+q}^{2} .
$$

We call (p, q) the inertia indices. They are defined in a more intrinsic way: we have

$$
\begin{aligned}
& p=\max \left\{\operatorname{dim} U \mid U \subset \mathbb{R}^{n} \text { is a subspace and } Q>0 \text { on } U-\{0\}\right\}, \\
& q=\max \left\{\operatorname{dim} U \mid U \subset \mathbb{R}^{n} \text { is a subspace and }-Q>0 \text { on } U-\{0\}\right\},
\end{aligned}
$$

For example,

1. Consider the quadratic form $Q(\underline{x})=x_{1}^{2}-2 x_{1} x_{2}+x_{3}^{2}$ on \mathbb{R}^{3}. Let's determine the inertia indices: completing the square, we see that

$$
Q=\left(x_{1}-x_{2}\right)^{2}-x_{2}^{2}+x_{3}^{2} .
$$

Thus, we see by inspection that Q is positive on the subspace $\left\{\left.\left[\begin{array}{l}x \\ 0 \\ y\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\}$, so that $p \geq 2$. We must also have $p \leq 3$ (since Q is a form on \mathbb{R}^{3}). As $Q\left(e_{1}+e_{2}\right)=$ $(1-1)^{2}-1^{2}+0^{2}=-1<0$, we do not have that $Q>0$ everywhere away from the origin, so that $p<3$ and we must have $p=2$ (here e_{1}, e_{2} are standard basis vectors in \mathbb{R}^{3}).

Similarly, we see that $-Q$ is positive away from the origin on the subspace $\left\{\left.\left[\begin{array}{l}x \\ x \\ 0\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}$. Hence, $q \geq 1$. As $p+q \leq 3$, we must have $q=1$.
2. Consider the quadratic form $Q(\underline{x})=2 x_{1} x_{2}$ on \mathbb{R}^{3}. Completing the square we find

$$
Q=\frac{1}{2}\left(\left(x_{1}+x_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}\right)
$$

By inspection, we see that Q is positive on the subspace $\left\{\left.\left[\begin{array}{l}x \\ x \\ 0\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}$. Thus, $p \geq 1$. Since $Q\left(e_{1}\right)=0, Q$ is not positive everywhere away from the origin so that $p<3$ (as
argued above). Suppose that Q is positive on a subspace U with $\operatorname{dim} U=2$, and let $u, v \in U$ be a basis (we are going to show this is impossible). We have

$$
u=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right], v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] .
$$

Thus, for every λ, μ (so that $(\lambda, \mu) \neq(0,0)$), we have $Q(\lambda u+\mu v)>0$. That is,

$$
Q(\lambda u+\mu v)=2\left(\lambda u_{1}+\mu v_{1}\right)\left(\lambda u_{2}+\mu v_{2}\right)>0 .
$$

In particular, note that Q would be positive on the subspace $\operatorname{span}\left(e_{1}, e_{2}\right) \subset \mathbb{R}^{3}$. However, $Q\left(e_{1}\right)=0$ so this does not hold. Hence, it can't be the case that Q is positive on a subspace U with $\operatorname{dim} U=2$, and therefore, $p=1$.
Note that $-Q$ is positive on the subspace $\left\{\left.\left[\begin{array}{c}x \\ -x \\ 0\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}$, so that $q \geq 1$. As $p+q \leq 3$ we must have $q \leq 2$. In a similar way to our determination of p, we must have $p \neq 2$ (if U was a two dimensional subspace on which $-Q$ is positive, then $-Q$ would be positive on $\left.\operatorname{span}\left(e_{1}, e_{2}\right)\right)$. Hence, $q=1$.

We can determine that $p, q \neq 2$ using the concept of the rank of a quadratic form: given the quadratic form Q, we first determine the coefficient matrix of Q; recall that this is the matrix B such that the symmetric bilinear form $Q: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ (using Givental's abuse of notation) takes the form $Q(x, y)=x^{t} B y$, and the quadratic form (careful!) takes the form $Q(x)=x^{t} B x$. In general, the $i j$ term of the coefficient matrix B of the quadratic form $Q=\sum_{1 \leq i \leq j \leq n} a_{i j} x_{i} x_{j}$ is

$$
b_{i j}=\left\{\begin{array}{l}
a_{i j}, \text { when } i=j, \\
\frac{1}{2} a_{i j}, \text { when } i \neq j .
\end{array} .\right.
$$

The matrices of the examples above are

$$
B=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], B=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The rank of the quadratic form is then the rank of the matrix B. The rank of a quadratic form can be intepreted as

$$
\operatorname{rank} Q=\max \left\{U \subset \mathbb{R}^{n} \mid U \text { is a subspace and } Q=0 \text { on } U\right\} .
$$

The main result is that $p+q=\operatorname{rank} B$; this is in Givental's notes, although perhaps not explicitly stated. Hence, for the second example above we can see that rank $B=2$ so that $p+q=2$, and since it is not too hard to show that $p, q \geq 1$, we must have $p=q=1$.
Finding 'orthogonal' bases of Q :

!! BEWARE !!: these bases are not 'orthogonal' in the usual sense (ie, with respect to the dot product on \mathbb{R}^{n})

When you complete the square for Q, and when $p+q=n$, you are, in fact, determining bases $\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{R}^{n} such that $Q\left(v_{i}, v_{j}\right)=0$, for $i \neq j$. However, sometimes care is needed! This is best illustrated by some examples:

1. Consider the quadratic form $Q=x_{1}^{2}-2 x_{1} x_{3}+4 x_{2} x_{3}-x_{2}^{2}$. Completing the square gives

$$
Q=\left(x_{1}-x_{3}\right)^{2}-x_{2}^{2}+4 x_{2} x_{3}-x_{3}^{2}=\left(x_{1}-x_{3}\right)^{2}-\left(x_{2}-2 x_{3}\right)^{2}+3 x_{3}^{2}
$$

If we set

$$
u_{1}=x_{1}-x_{3}, u_{2}=x_{2}-2 x_{3}, u_{3}=x_{3},
$$

then $Q(u)=u_{1}^{2}-u_{2}^{2}+3 u_{3}^{2}$. Note that the above equations can be written in matrix form as

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] .
$$

Denoting the matrix A^{-1}, we find its inverse is

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, we see that, for every $u \in \mathbb{R}^{3}$

$$
u^{t} A^{t} B A u=u^{t}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right] u .
$$

Here, $B=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & -1 & 2 \\ -1 & 2 & 0\end{array}\right]$ is the coefficient matrix of Q (with respect to the standard coordinates). The above formula thus implies that $A^{t} B A$ is a diagonal matrix, so that the columns of A are a Q-orthogonal basis (this is discussed in Givental's notes).

Note: the columns of A are NOT orthogonal with respect to the usual notion of orthogonality (via the dot product on \mathbb{R}^{3}); but this is OK!

Since $p+q=3$, we could have obtained a matrix A such that $A^{t} B A$ is diagonal as follows: let U_{+}be a subspace such that $\operatorname{dim} U_{+}=p$ and $Q>0$ on U_{+}; similarly, let U_{-} be a subspace such that $\operatorname{dim} U_{-}=q$ and $-Q>0$ on U_{-}. We see that we can take

$$
\begin{gathered}
U_{+}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{2}-2 x_{3}=0\right\}=\left\{\left.\left[\begin{array}{c}
x \\
2 y \\
y
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}\right\} \\
U_{-}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}-x_{3}=0, x_{3}=0\right\}=\left\{\left.\left[\begin{array}{l}
0 \\
x \\
0
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} .
\end{gathered}
$$

Now, we find a basis of U_{+}and U_{-}as follows: since $\operatorname{dim} U_{-}=1$ we just take any nonzero vector in U_{-}; for example e_{2}. For U_{+}, choose $v_{1} \in U_{+}$such that $Q\left(v_{1}\right)>0$, say $v_{1}=e_{1}$. Then, consider those elements $v \in U_{+}$satisfying

$$
0=Q\left(v, v_{1}\right)=x_{1}-x_{3} .
$$

Thus, we want an element in U_{+}satisfying both $x_{2}-2 x_{3}=0$ and $x_{1}-x_{3}=0$; this is precisely the subspace $\left\{\left.\left[\begin{array}{c}x \\ 2 x \\ x\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}$. Thus, we can recover the columns of A above in this way.
2. Consider the quadratic form $Q=4 x_{1} x_{2}+4 x_{1} x_{3}=4 x_{1}\left(x_{2}+x_{3}\right)$. We complete the square to get

$$
Q=\left(x_{1}+\left(x_{2}+x_{3}\right)\right)^{2}-\left(x_{1}-\left(x_{2}+x_{3}\right)\right)^{2} .
$$

Hence, we can set

$$
u_{1}=x_{1}+x_{2}+x_{3}, u_{2}=x_{1}-x_{2}-x_{3},
$$

but what about u_{3} ? It's not so clear how to proceed...
We need to proceed as we did in the previous example: let's find subspaces U_{+}, U_{-}as above. First observe that the rank of Q is 2 (by looking at the coefficient matrix of Q). Thus, we firstly need to take a basis of $\operatorname{ker} Q$. It can be seen that this is

$$
\operatorname{ker} Q=\operatorname{nul}\left(\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]\right)=\left\{\left.\left[\begin{array}{c}
0 \\
x \\
-x
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} .
$$

The remaining basis vectors must be Q-orthogonal to ker Q; so we must ensure that vectors in U_{+}and U_{-}are Q-orthogonal to ker Q. Any such vector x must satisfy $2 x_{2}-$ $2 x_{3}=0$, because we require $Q\left(x, e_{2}-e_{3}\right)=0$. Then, we can take

$$
\begin{gathered}
U_{+}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}=x_{2}+x_{3}, x_{2}-x_{3}=0 \in \mathbb{R}\right\}=\left\{\left.\left[\begin{array}{c}
2 x \\
x \\
x
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\} \\
U_{-}=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1}=-\left(x_{2}+x_{3}\right), x_{2}-x_{3}=0 \in \mathbb{R}\right\}=\left\{\left.\left[\begin{array}{c}
-2 x \\
x \\
x
\end{array}\right] \right\rvert\, x \in \mathbb{R}\right\}
\end{gathered}
$$

So, if we take

$$
A=\left[\begin{array}{ccc}
2 & -2 & 0 \\
1 & 1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

then

$$
A^{t} B A=\left[\begin{array}{ccc}
16 & 0 & 0 \\
0 & -16 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

3. Consider the form $Q=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$. For this example, we need a different approach: we follow the (implicit) algorithm discussed in Givental's notes. First, we observe that the coefficient matrix of Q is

$$
B=\left[\begin{array}{ccc}
0 & 1 / 2 & 1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0
\end{array}\right]
$$

