Math 110, Fall 2014. Quadratic Forms

Consider the quadratic form

Q:R" =>R; x— Z ajiX;x;.

1<i<j<n

It is a Theorem that we can find a change of coordinates x = Cu such that, in this new
coordinate system,
2 2
Qu) = Muf + .. + Aptqlpyg

where Ay > Ay > -~ > X, >0,and 0> Ap1 > -+ > Aprq.

We can go one better than what we have above: we can find a change of coordinates x = Dz
such that, in this new coordinate system,

— 52 2 2 2
Q2)=zi+. +2, =2~ ~Zpg

We call (p, g) the inertia indices. They are defined in a more intrinsic way: we have
p=max{dimU | U C R" is a subspace and @ > 0 on U — {0}},

g =max{dimU | U C R" is a subspace and —Q > 0 on U — {0}},

For example,

1. Consider the quadratic form Q(x) = X12 —2x1x0 + x32 on R3. Let's determine the inertia
indices: completing the square, we see that

Q= (x —xz)2 —X22 +x32.

X
Thus, we see by inspection that @ is positive on the subspace 0| |x,yeR, so
y
that p > 2. We must also have p < 3 (since Q is a form on R3). As Q(e; + &) =
(1- 1)2 — 12402 = —1 < 0, we do not have that Q@ > 0 everywhere away from the
origin, so that p < 3 and we must have p = 2 (here e;, e; are standard basis vectors in
R3).

X

Similarly, we see that —Q is positive away from the origin on the subspace ¢ | x| | x € R
0

Hence, g > 1. As p+ g < 3, we must have g = 1.

2. Consider the quadratic form Q(x) = 2x;x» on R3. Completing the square we find

@=L (6 + 02— (0 — )

2
X
By inspection, we see that @ is positive on the subspace x| | x€R ). Thus, p > 1.
0

Since Q(e1) = 0, Q is not positive everywhere away from the origin so that p < 3 (as



argued above). Suppose that Q is positive on a subspace U with dim U = 2, and let
u,v € U be a basis (we are going to show this is impossible). We have

n Vi
u= |Uu|,v=|w
u3 V3

Thus, for every A, i (so that (A, p) # (0,0)), we have Q(Au+ pv) > 0. That is,
Q(A\u+ pv) =2(Auy + pvi)(Auz + pve) > 0.

In particular, note that Q would be positive on the subspace span(e;, &) C R3. However,
Q(e1) = 0 so this does not hold. Hence, it can't be the case that Q is positive on a
subspace U with dim U = 2, and therefore, p = 1.

X

Note that —Q is positive on the subspace —x| | x€R },sothatg > 1. Asp+qg <3
0

we must have g < 2. In a similar way to our determination of p, we must have p # 2 (if

U was a two dimensional subspace on which —Q is positive, then —Q would be positive

on span(ej, e2)). Hence, g = 1.

We can determine that p, g # 2 using the concept of the rank of a quadratic form: given the
quadratic form @, we first determine the coefficient matrix of Q; recall that this is the matrix
B such that the symmetric bilinear form Q : R” x R” — R (using Givental's abuse of notation)
takes the form Q(x, y) = x*By, and the quadratic form (careful!) takes the form Q(x) = x*Bx.
In general, the jj term of the coefficient matrix B of the quadratic form Q = Zlgigjgn ajjX;X;

is
ajj, wheni=j,

5aij, when i #j.
The matrices of the examples above are

1 -1 0 010

B=|-1 0 0|,B=(1 00

0 0 1 000

The rank of the quadratic form is then the rank of the matrix B. The rank of a quadratic form
can be intepreted as

rank@ = max{U C R" | U is a subspace and Q = 0 on U}.

The main result is that p + g = rankB; this is in Givental’s notes, although perhaps not
explicitly stated. Hence, for the second example above we can see that rankB = 2 so that
p+ g =2, and since it is not too hard to show that p,q > 1, we must have p =g = 1.

Finding ‘orthogonal’ bases of Q:

Il BEWARE !!: these bases are not ‘orthogonal’ in the usual sense (ie, with respect
to the dot product on R")

When you complete the square for @, and when p+ g = n, you are, in fact, determining bases
(v1,..., va) of R” such that Q(v;, vj) = 0, for i # j. However, sometimes care is needed!
This is best illustrated by some examples:



1. Consider the quadratic form Q = x? — 2x1x3 + 4xax3 — x5. Completing the square gives

Q=(x — X3)2 — x22 + 4xox3 — xg =(x1 — X3)2 — (2 — 2X3)2 + 3x§

If we set
U = X1 — X3, Up = Xo — 2x3, U3 = X3,

then Q(u) = u? — u? + 3u3. Note that the above equations can be written in matrix
form as

up 1 0 -1 X1
u | = 01 -2 X2
u3 00 1 X3
Denoting the matrix A~1, we find its inverse is
1 01
A=1(0 1 2
0 01
Hence, we see that, for every u € R3
1 0 O
VABAu=ut |0 -1 0| w.
0O 0 3
1 0 -1
Here, B= | 0 —1 2 | is the coefficient matrix of @ (with respect to the standard
-1 2 0

coordinates). The above formula thus implies that A'BA is a diagonal matrix, so that
the columns of A are a Q-orthogonal basis (this is discussed in Givental's notes).

Note: the columns of A are NOT orthogonal with respect to the usual notion of
orthogonality (via the dot product on R3); but this is OK!

Since p + g = 3, we could have obtained a matrix A such that A'BA is diagonal as
follows: let U, be a subspace such that dim Uy = p and Q > 0 on U.; similarly, let U_
be a subspace such that dimU_ = g and —Q > 0 on U_. We see that we can take

X1 X
Ur=<|x| | xx—2x3=03=<¢ |2y| | x,y €R
X3 y
X1 0
U- = X2 |X1—X3:0,X3:0 = X |X€R
X3 0
Now, we find a basis of Uy and U- as follows: since dim U- = 1 we just take any

nonzero vector in U_; for example e;. For Uy, choose vi € Uy such that Q(v;) > 0,
say vi = e;. Then, consider those elements v € U, satisfying

0=Q(v,v1) =x1 — x3.



Thus, we want an element in U, satisfying both xo — 2x3 = 0 and x; — x3 = 0; this is
X

precisely the subspace 2x| | x € R 3. Thus, we can recover the columns of A above
X

in this way.

. Consider the quadratic form Q = 4x3xp +4x1x3 = 4x1(x2 + x3). We complete the square
to get
Q = (x1 + (2 + x3))* — (x1 — (x2 + x3))°.

Hence, we can set
Uy = X1+ X0+ X3, Up = X1 — X2 — X3,

but what about u3? It's not so clear how to proceed...

We need to proceed as we did in the previous example: let’s find subspaces Uy, U_ as
above. First observe that the rank of Q is 2 (by looking at the coefficient matrix of Q).
Thus, we firstly need to take a basis of ker Q. It can be seen that this is

0o 2 2 0
ker @ = nul 2 00 = x| |xeR
2 00 —X

The remaining basis vectors must be Q-orthogonal to ker Q; so we must ensure that
vectors in Uy and U_ are Q-orthogonal to ker Q. Any such vector x must satisfy 2x, —
2x3 = 0, because we require Q(x, &2 — e3) = 0. Then, we can take

X1 2x
Uy = x| |x1=x+x3,x—x3=0€R ) = x| |xeR
X3 X
X1 —2x
U_ = x| [xi=—(x+x3),x—x3=0€R ) = X | xeR
X3 X
So, if we take
2 =2 0
A=11 1 1
1 1 -1
then
16 0 O
ATBA= |0 -16 0
0 0 O

. Consider the form Q = xyx>+x1x3+X0x3. For this example, we need a different approach:
we follow the (implicit) algorithm discussed in Givental's notes. First, we observe that
the coefficient matrix of Q is

0 1/2 1/2
B=|1/2 0 1/2
1/2 1/2 0



