Math 110, Fall 2014. ODE Practice Problems

Determine the general solution to the following systems of linear ODE:
1.

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{2}(t)
\end{aligned}
$$

2.

$$
\begin{aligned}
x_{1}^{\prime}(t) & = \\
x_{2}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t)+x_{2}(t)+x_{3}(t) & =-2 x_{1}(t)-2 x_{2}(t)-2 x_{3}(t)
\end{aligned}
$$

3.

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =-x_{2}(t)-x_{3}(t)
\end{aligned}
$$

We need to find the matrix form of the above systems of ODEs: we have

$$
x^{\prime}(t)=A x(t)
$$

where A is one of the following matrices

$$
\left[\begin{array}{ccc}
2 & 0 & -1 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & -1 & -1
\end{array}\right]
$$

We need to determine the Jordan forms of these matrices: we must first obtain the characteristic polynomials

$$
(2-x)\left(x^{2}-x-1\right), \quad x^{3}, \quad(1-x) x^{2}
$$

The first polynomial has three distinct roots $(1,(1 \pm \sqrt{5}) / 2)$ so its Jordan form is diagonal with these roots appearing on the diagonal.

The second matrix is nilpotent and, since $\operatorname{dim} \operatorname{nul}(A)=2$, the Jordan form has two 0 -Jordan blocks. Hence, the Jordan form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

For the third matrix, we note that $\operatorname{dim} \operatorname{nul}(A)=1$ so that the Jordan form contains only one 0 -Jordan block. Hence, the Jordan form is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

If $P=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]$ is a matrix such that $P^{-1} A P=J$ is the Jordan form, then the general solution to the given system of ODEs is

$$
x(t)=e^{A t} x(0)=P e^{J t} P^{-1} x(0)
$$

For the first system we have

$$
e^{J t}=\left[\begin{array}{lll}
e^{2 t} & & \\
& e^{(1+\sqrt{5}) t / 2} & \\
& & e^{(1-\sqrt{5}) t / 2}
\end{array}\right]
$$

and, the general solution is

$$
x(t)=c_{1} e^{2 t} u_{1}+c_{2} e^{(1+\sqrt{5}) t / 2} u_{2}+c_{3} e^{(1-\sqrt{5}) t / 2} u_{3} .
$$

For the second system we find that (because $J^{2}=0$)

$$
e^{J t}=\left[\begin{array}{lll}
1 & t & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Hence, we find

$$
x(t)=c_{1}(1+t) u_{1}+c_{2} u_{2}+c_{3} u_{3} .
$$

To find suitable u_{1}, u_{2}, u_{3} we proceed as follows: u_{2} must be a vector that does not lie in $\operatorname{nul}(A)=\operatorname{span}\left(e_{1}-e_{2}, e_{1}-e_{3}\right)$. Hence, we can take $u_{2}=e_{1}$, so that $u_{1}=e_{1}+e_{2}-2 e_{3}$. Then, we need $u_{3} \in \operatorname{nul}(A)$ such that $\left(u_{1}, u_{3}\right)$ is linearly independent: we can take $u_{3}=e_{1}-e_{2}$.
For the third system we find

$$
e^{J t}=\left[\begin{array}{lll}
e^{t} & & \\
& 1 & t \\
& & 1
\end{array}\right]
$$

and the general solution is

$$
x(t)=c_{1} e^{t} u_{1}+c_{2}(1+t) u_{2}+c_{3} u_{3}
$$

where u_{1} is an eigenvector with eigenvalue 1 . We can take $u_{1}=e_{1} . u_{3}$ must be a vector such that $u_{3} \notin \operatorname{nul}(A)+\operatorname{span}\left(e_{1}\right)=\operatorname{span}\left(e_{1}-e_{2}, e_{1}\right)=\operatorname{span}\left(e_{1}, e_{2}\right)$. Hence, we can take $u_{3}=e_{3}$. Then, $u_{2}=A u_{3}=e_{1}-e_{2}$.

