Math 110, Fall 2014. Some Jordan Form Examples

Here are the facts that we are going to repeatedly use :

- dim null $(T-\lambda)$ equals the number of λ-Jordan blocks appearing.
- if T admits precisely one eigenvalue λ, and e is the smallest integer such that null($T-$ $\lambda)^{e}=V$, then the size of the largest λ-Jordan block is $e \times e$.

Problem: Determine the Jordan form and Jordan bases for the following operators:

$$
T: \mathbb{C}^{4} \rightarrow \mathbb{C}^{4} ; \underline{x} \mapsto A \underline{x},
$$

where

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 \\
-1 & 0 & 2 & 0 \\
1 & 1 & 0 & 2
\end{array}\right],\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & -1
\end{array}\right]
$$

i) Since A is upper-triangular with 1 s on the diagonal then the only eigenvalue is $\lambda=1$. Since $\operatorname{dim} \operatorname{null}(T-I)=2$ we have that the Jordan form of T has two 1 -Jordan blocks. Since $(T-I)^{3}=0 \in L\left(\mathbb{C}^{4}\right)$, and $(T-I)^{2} \neq 0$, then we see that the largest 1 -Jordan block is 3×3. The only possible Jordan form is

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A Jordan basis is a basis $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that

$$
T\left(v_{1}\right)=v_{1}, T\left(v_{2}\right)=v_{2}+v_{1}, T\left(v_{3}\right)=v_{3}+v_{2}, T\left(v_{4}\right)=v_{4} .
$$

In particular, we see that $(T-I)^{3}\left(v_{3}\right)=0$, while $(T-I)^{2}\left(v_{3}\right) \neq 0$. Moreover, once we determine v_{3} we find that $v_{2}=(T-I)\left(v_{3}\right)$, and $v_{1}=(T-I)\left(v_{2}\right)$. We compute

$$
\operatorname{null}\left((T-I)^{2}\right)=\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right)
$$

so that we can choose $v_{3}=e_{4}$. Hence, $v_{2}=(T-I)\left(v_{3}\right)=e_{1}+e_{2}, v_{1}=(T-I)\left(v_{2}\right)=e_{1}$. Now, we need $v_{4} \in \operatorname{null}((T-I))=\operatorname{span}\left(e_{1},-e_{2}+e_{3}\right)$ such that $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is linearly independent. So, we can take $v_{4}=-e_{2}+e_{3}$. Then,

$$
\left(e_{1}, e_{1}+e_{2}, e_{4},-e_{2}+e_{3}\right)
$$

is a Jordan basis.
ii) Since A is upper-triangular with 0 s on the diagonal then the only eigenvalue is $\lambda=0$. Since dim null $T=2$ we have that the Jordan form of T has two Jordan blocks. Since $T^{2}=0 \in$ $L\left(\mathbb{C}^{4}\right)$, while $T \neq 0$, then the largest Jordan block is 2×2. The only possible Jordan form is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

A Jordan basis is a basis $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ such that

$$
T\left(v_{1}\right)=0, T\left(v_{2}\right)=v_{1}, T\left(v_{3}\right)=0, T\left(v_{4}\right)=v_{3} .
$$

In particular, we have $T^{2}\left(v_{2}\right)=0$ while $T\left(v_{2}\right)=v_{1} \neq 0$, and $T^{2}\left(v_{4}\right)=0$, while $T\left(v_{4}\right)=v_{3} \neq$ 0 . Since null $T=\operatorname{span}\left(e_{1}, e_{2}\right)$ and null $T^{2}=\mathbb{C}^{4}$, then we can take $v_{2}=e_{3}$ and $v_{4}=e_{4}$. Then, $v_{1}=T\left(v_{2}\right)=e_{2}$ and $v_{3}=T\left(v_{4}\right)=e_{1}+e_{2}$. Hence, a Jordan basis is

$$
\left(e_{2}, e_{3}, e_{1}+e_{2}, e_{4}\right) .
$$

iii) Since A is lower-triangular with 02 s on the diagonal then the only eigenvalue is $\lambda=2$. Since dim null $(T-2)=2$ we have that the Jordan form of T has two Jordan blocks. Since $(T-2)^{3}=0 \in L\left(\mathbb{C}^{4}\right)$ and $(T-2)^{2} \neq 0$, the largest Jordan block is 3×3 and the only possible Jordan form is

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

Proceeding as in i) above, and using that null $(T-2)^{2}=\operatorname{span}\left(e_{2}, e_{3}, e_{4}\right)$, we can take $v_{3}=e_{1}$, so that $v_{2}=(T-2)\left(v_{3}\right)=-e_{2}-e_{3}+e_{4}$ and $v_{1}=(T-2)\left(v_{2}\right)=-e_{4}$. As $\operatorname{null}((T-2))=\operatorname{span}\left(e_{3}, e_{4}\right)$, if we take $v_{4}=e_{3}$ then

$$
\left(-e_{4},-e_{2}-e_{3}+e_{4}, e_{1}, e_{3}\right)
$$

is a Jordan basis.
iv) You can check that $T^{2}=0 \in L\left(\mathbb{C}^{4}\right)\left(\right.$ since $\left.A^{2}=0\right)$ so that null $\left(T^{2}\right)=\mathbb{C}^{4}$. Hence, the largest Jordan block is 2×2 and the only possible Jordan form is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Proceeding as in ii) above, and using that null $T=\operatorname{span}\left(e_{1}+e_{4}, e_{2}-e_{3}\right)$ we can take $v_{2}=e_{1}$ and $v_{4}=e_{2}$ so that $v_{1}=T\left(v_{2}\right)=e_{1}+e_{4}$ and $v_{3}=T\left(v_{4}\right)=-e_{2}+e_{3}$. Then,

$$
\left(e_{1}+e_{4}, e_{1},-e_{2}+e_{3}, e_{2}\right)
$$

is a Jordan basis.
Note that we have to be careful here - we need to ensure that we choose v_{2}, v_{4} which are linearly independent and such that $\operatorname{span}\left(v_{2}, v_{4}\right) \cap$ null $T=\{0\}$ (ie, if we chose $v_{4}=e_{4}$ then $v_{2}+v_{4}=e_{1}+e_{4} \in$ null $\left.T\right)$.

