Math 110, Fall 2014. Some Jordan Form Examples

Here are the facts that we are going to repeatedly use :

- dim null($T \lambda$) equals the number of λ -Jordan blocks appearing.
- if T admits precisely one eigenvalue λ , and e is the smallest integer such that null $(T \lambda)^e = V$, then the size of the largest λ -Jordan block is $e \times e$.

Problem: Determine the Jordan form and Jordan bases for the following operators:

$$T: \mathbb{C}^4
ightarrow \mathbb{C}^4$$
 ; $\underline{x} \mapsto A \underline{x}$,

where

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

i) Since A is upper-triangular with 1s on the diagonal then the only eigenvalue is $\lambda = 1$. Since dim null(T - I) = 2 we have that the Jordan form of T has two 1-Jordan blocks. Since $(T - I)^3 = 0 \in L(\mathbb{C}^4)$, and $(T - I)^2 \neq 0$, then we see that the largest 1-Jordan block is 3×3 . The only possible Jordan form is

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

A Jordan basis is a basis (v_1, v_2, v_3, v_4) such that

$$T(v_1) = v_1$$
, $T(v_2) = v_2 + v_1$, $T(v_3) = v_3 + v_2$, $T(v_4) = v_4$

In particular, we see that $(T - I)^3(v_3) = 0$, while $(T - I)^2(v_3) \neq 0$. Moreover, once we determine v_3 we find that $v_2 = (T - I)(v_3)$, and $v_1 = (T - I)(v_2)$. We compute

$$\operatorname{null}((T - I)^2) = \operatorname{span}(e_1, e_2, e_3),$$

so that we can choose $v_3 = e_4$. Hence, $v_2 = (T - I)(v_3) = e_1 + e_2$, $v_1 = (T - I)(v_2) = e_1$. Now, we need $v_4 \in \text{null}((T - I)) = \text{span}(e_1, -e_2 + e_3)$ such that (v_1, v_2, v_3, v_4) is linearly independent. So, we can take $v_4 = -e_2 + e_3$. Then,

$$(e_1, e_1 + e_2, e_4, -e_2 + e_3),$$

is a Jordan basis.

ii) Since A is upper-triangular with 0s on the diagonal then the only eigenvalue is $\lambda = 0$. Since dim null T = 2 we have that the Jordan form of T has two Jordan blocks. Since $T^2 = 0 \in L(\mathbb{C}^4)$, while $T \neq 0$, then the largest Jordan block is 2×2 . The only possible Jordan form is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A Jordan basis is a basis (v_1, v_2, v_3, v_4) such that

$$T(v_1) = 0$$
, $T(v_2) = v_1$, $T(v_3) = 0$, $T(v_4) = v_3$.

In particular, we have $T^2(v_2) = 0$ while $T(v_2) = v_1 \neq 0$, and $T^2(v_4) = 0$, while $T(v_4) = v_3 \neq 0$. Since null $T = \text{span}(e_1, e_2)$ and null $T^2 = \mathbb{C}^4$, then we can take $v_2 = e_3$ and $v_4 = e_4$. Then, $v_1 = T(v_2) = e_2$ and $v_3 = T(v_4) = e_1 + e_2$. Hence, a Jordan basis is

$$(e_2, e_3, e_1 + e_2, e_4).$$

iii) Since A is lower-triangular with 02s on the diagonal then the only eigenvalue is $\lambda = 2$. Since dim null(T - 2) = 2 we have that the Jordan form of T has two Jordan blocks. Since $(T-2)^3 = 0 \in L(\mathbb{C}^4)$ and $(T-2)^2 \neq 0$, the largest Jordan block is 3×3 and the only possible Jordan form is

2	1	0	0	
0	2	1	0	
0	0	2	0	
0	0	0	2	

Proceeding as in i) above, and using that $null(T-2)^2 = span(e_2, e_3, e_4)$, we can take $v_3 = e_1$, so that $v_2 = (T-2)(v_3) = -e_2 - e_3 + e_4$ and $v_1 = (T-2)(v_2) = -e_4$. As $null((T-2)) = span(e_3, e_4)$, if we take $v_4 = e_3$ then

$$(-e_4, -e_2 - e_3 + e_4, e_1, e_3),$$

is a Jordan basis.

iv) You can check that $T^2 = 0 \in L(\mathbb{C}^4)$ (since $A^2 = 0$) so that null(T^2) = \mathbb{C}^4 . Hence, the largest Jordan block is 2×2 and the only possible Jordan form is

Γ0	1	0	0]	
0	0	0	0	
0	0	0	1	•
0	0	0	0	

Proceeding as in ii) above, and using that null $T = \text{span}(e_1 + e_4, e_2 - e_3)$ we can take $v_2 = e_1$ and $v_4 = e_2$ so that $v_1 = T(v_2) = e_1 + e_4$ and $v_3 = T(v_4) = -e_2 + e_3$. Then,

$$(e_1 + e_4, e_1, -e_2 + e_3, e_2),$$

is a Jordan basis.

Note that we have to be careful here - we need to ensure that we choose v_2 , v_4 which are linearly independent and such that span $(v_2, v_4) \cap \text{null } T = \{0\}$ (ie, if we chose $v_4 = e_4$ then $v_2 + v_4 = e_1 + e_4 \in \text{null } T$).