Math 110, Fall 2013. Midterm Review

Things You Must Know:

Definitions:

- Ch. 1 vector space over *F*, subspace, sums of subspaces, direct sums of subspace (in particular, they are special types of sums).
- Ch. 2 finite dimensional spaces, spanning lists, linearly (in)dependent lists, basis, dimension.
- Ch. 3 linear maps, null(T), range(T), L(V, W), L(V), operators, matrix of a linear map, injective, surjective, bijective, invertible linear map, isomorphic.
- Ch. 4 Fundamental Theorem of Algebra, degree of polynomials, division algorithm.
- Ch. 5 invariant subspaces, upper-triangular matrices, eigenvalues, eigenvectors, diagonal matrices.

Theorems:

Ch. 1 -
$$U \subset V$$
 is a subspace if and only if $\forall \lambda, \mu \in F$, $u, v \in U$ we have $\lambda u + \mu v \in U$.

- for $U, W \subset V$ subspaces, U + W is a subspace.
- $V = U \oplus W$ if and only if V = U + W and $U \cap W = \{0\}$.
- Ch. 2 - if V is f.d and $(v_1, ..., v_m)$ is linearly dependent in V, and $v_1 \neq 0$ then there is $j \in \{2, ..., m\}$ such that $(v_1, ..., v_i)$ is linearly independent, for i = 1, ..., j 1, and $v_j \in \text{span}(v_1, ..., v_{j-1})$. Hence, $\text{span}(v_1, ..., v_j) = \text{span}(v_1, ..., v_{j-1})$.
 - if V is f.d. with $V = \text{span}(v_1, \dots, v_m)$, and (v_1, \dots, v_k) is linearly independent, then $k \leq m$.
 - if dim V = n and $(v_1, ..., v_k)$ is linearly independent then $k \le n$. (linearly independent lists are 'small')
 - if dim V = n and $(v_1, ..., v_m)$ is a spanning list then $m \ge n$. (spanning lists are 'big')
 - bases exist!
 - every linearly independent list of length dim V is a basis.
 - every spanning list of length dim V is a basis.
 - every linearly independent list can be extended to a basis.
 - if (v_1, \ldots, v_m) is a spanning list in V, dim V = n, then there are $i_1, \ldots, i_n \in \{1, \ldots, m\}$ distinct, such that $(v_{i_1}, \ldots, v_{i_n})$ is a basis.
 - if $U \subset V$ is a subspace then dim $U \leq \dim V$. In particular, any basis of U can be extended to a basis of V.
 - (**Dimension Formula**) if $U, W \subset V$ are subspaces, V f.d., then

 $\dim(U+W) = \dim U + \dim W - \dim U \cap W.$

- U + W is a direct sum if and only if dim $(U + W) = \dim U + \dim W$.

Ch. 3 - - let $T \in L(V, W)$. Then, null $(T) \subset V$ is a subspace; range $(T) \subset W$ is a subspace.

- $T \in L(V, W)$ is injective if and only if null $(T) = \{0\}$.
- $T \in L(V, W)$ is surjective if and only if range(T) = W.
- let V be f.d., $T \in L(V, W)$. Then, dim $V = \dim \operatorname{null}(T) + \dim \operatorname{range}(T)$.
- if dim $V > \dim W$ then no linear map $T \in L(V, W)$ is injective.
- if dim $V < \dim W$ then no linear map $T \in L(V, W)$ is surjective.
- if $T \in L(V, W)$ is injective and $(v_1, ..., v_k) \subset V$ is linearly independent then $(T(v_1), ..., T(v_k)) \subset W$ is linearly independent.
- if $T \in L(V, W)$ is surjective and $(v_1, ..., v_m)$ spans V then $(T(v_1), ..., T(v_m))$ spans W.
- -L(V, W) is a vector space over F; it had dim $L(V, W) = \dim V \dim W$
- -L(V) is a vector space over F.
- $-T \in L(V)$ is injective if and only T is surjective if and only if T is invertible.
- V and W are isomorphic if and only if dim $V = \dim W$.
- if $(v_1, ..., v_n) \subset V$ is a basis of V and $w_1, ..., w_n \in W$ arbitrary, then there is a unique linear map $T \in L(V, W)$ such that $T(v_i) = w_i$.
- Ch. 4 - every nonconstant polynomial with complex coefficients admits a root.
 - every nonconstant polynomial with complex coefficients of degree *m* has exactly *m* roots.
 - if q divides p and deg $q > \deg p$ the p = 0 is the zero polynomial.
 - every polynomial with real coefficients and odd degree has a real root.
- Ch. 5 - if $v_1, ..., v_m$ are eigenvectors of $T \in L(V)$, corresponding to distinct eigenvalues, that $(v_1, ..., v_m)$ is linearly independent.
 - any $T \in L(V)$ has at most dim V distinct eigenvalues.
 - every $T \in L(V)$, for V a complex vector space, admits an eigenvalue.
 - for any $T \in L(V)$, V a complex vector space, there is a basis of V, $B = (v_1, ..., v_n)$ such that $[T]_B$, the matrix of T relative to B, is upper-triangular. In particular, $T(v_i) \in \text{span}(v_1, ..., v_i)$, for each i, and $\text{span}(v_1, ..., v_i)$ is T-invariant, for each i.
 - Suppose that the matrix of T relative to the basis B is upper-triangular. Then, the eigenvalues of T are precisely the diagonal entries of this matrix.
 - $T \in L(V)$ has a diagonal matrix with respect to some basis of V if and only if V admits a basis of eigenvectors.
 - $T \in L(V)$ has a diagonal matrix with respect to some basis of V if and only if

 $\dim V = \dim \operatorname{null}(T - \lambda_1 \operatorname{id}_V) + \ldots + \operatorname{null}(T - \lambda_k \operatorname{id}_V),$

where $\lambda_1, \ldots, \lambda_k$ are the distinct eigenvalues of T.

- 0 is an eigenvalue of $T \in L(V)$ if and only if null $(T) \neq \{0\}$.