Math 110, Fall 2013. Midterm Review

Things You Must Know:

Definitions:
Ch. 1 - vector space over F, subspace, sums of subspaces, direct sums of subspace (in particular, they are special types of sums).

Ch. 2 - finite dimensional spaces, spanning lists, linearly (in)dependent lists, basis, dimension.
Ch. 3 - linear maps, null (T), range $(T), L(V, W), L(V)$, operators, matrix of a linear map, injective, surjective, bijective, invertible linear map, isomorphic.

Ch. 4 - Fundamental Theorem of Algebra, degree of polynomials, division algorithm.
Ch. 5 - invariant subspaces, upper-triangular matrices, eigenvalues, eigenvectors, diagonal matrices.

Theorems:
Ch. 1- $\quad-U \subset V$ is a subspace if and only if $\forall \lambda, \mu \in F, u, v \in U$ we have $\lambda u+\mu v \in U$.

- for $U, W \subset V$ subspaces, $U+W$ is a subspace.
- $V=U \oplus W$ if and only if $V=U+W$ and $U \cap W=\{0\}$.

Ch. 2- - if V is f.d and $\left(v_{1}, \ldots, v_{m}\right)$ is linearly dependent in V, and $v_{1} \neq 0$ then there is $j \in\{2, \ldots, m\}$ such that $\left(v_{1}, \ldots, v_{i}\right)$ is linearly independent, for $i=1, \ldots, j-1$, and $v_{j} \in \operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$. Hence, $\operatorname{span}\left(v_{1}, \ldots, v_{j}\right)=\operatorname{span}\left(v_{1}, \ldots, v_{j-1}\right)$.

- if V is f.d. with $V=\operatorname{span}\left(v_{1}, \ldots, v_{m}\right)$, and $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent, then $k \leq m$.
- if $\operatorname{dim} V=n$ and $\left(v_{1}, \ldots, v_{k}\right)$ is linearly independent then $k \leq n$. (linearly independent lists are 'small')
- if $\operatorname{dim} V=n$ and $\left(v_{1}, \ldots, v_{m}\right)$ is a spanning list then $m \geq n$. (spanning lists are 'big')
- bases exist!
- every linearly independent list of length $\operatorname{dim} V$ is a basis.
- every spanning list of length $\operatorname{dim} V$ is a basis.
- every linearly independent list can be extended to a basis.
- if $\left(v_{1}, \ldots, v_{m}\right)$ is a spanning list in $V, \operatorname{dim} V=n$, then there are $i_{1}, \ldots, i_{n} \in\{1, \ldots, m\}$ distinct, such that $\left(v_{i_{1}}, \ldots, v_{i_{n}}\right)$ is a basis.
- if $U \subset V$ is a subspace then $\operatorname{dim} U \leq \operatorname{dim} V$. In particular, any basis of U can be extended to a basis of V.
- (Dimension Formula) if $U, W \subset V$ are subspaces, V f.d., then

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim} U \cap W .
$$

$-U+W$ is a direct sum if and only if $\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W$.
Ch. 3 - - let $T \in L(V, W)$. Then, $\operatorname{null}(T) \subset V$ is a subspace; $\operatorname{range}(T) \subset W$ is a subspace.

- $T \in L(V, W)$ is injective if and only if null $(T)=\{0\}$.
- $T \in L(V, W)$ is surjective if and only if $\operatorname{range}(T)=W$.
- let V be f.d., $T \in L(V, W)$. Then, $\operatorname{dim} V=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)$.
- if $\operatorname{dim} V>\operatorname{dim} W$ then no linear map $T \in L(V, W)$ is injective.
- if $\operatorname{dim} V<\operatorname{dim} W$ then no linear map $T \in L(V, W)$ is surjective.
- if $T \in L(V, W)$ is injective and $\left(v_{1}, \ldots, v_{k}\right) \subset V$ is linearly independent then $\left(T\left(v_{1}\right), \ldots, T\left(v_{k}\right)\right) \subset W$ is linearly independent.
- if $T \in L(V, W)$ is surjective and $\left(v_{1}, \ldots, v_{m}\right)$ spans V then $\left(T\left(v_{1}\right), \ldots, T\left(v_{m}\right)\right)$ spans W.
- $L(V, W)$ is a vector space over F; it had $\operatorname{dim} L(V, W)=\operatorname{dim} V \operatorname{dim} W$
- $L(V)$ is a vector space over F.
- $T \in L(V)$ is injective if and only T is surjective if and only if T is invertible.
- V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
- if $\left(v_{1}, \ldots, v_{n}\right) \subset V$ is a basis of V and $w_{1}, \ldots w_{n} \in W$ arbitrary, then there is a unique linear map $T \in L(V, W)$ such that $T\left(v_{i}\right)=w_{i}$.

Ch. 4 - - every nonconstant polynomial with complex coefficients admits a root.

- every nonconstant polynomial with complex coefficients of degree m has exactly m roots.
- if q divides p and $\operatorname{deg} q>\operatorname{deg} p$ the $p=0$ is the zero polynomial.
- every polynomial with real coefficients and odd degree has a real root.

Ch. 5- - if v_{1}, \ldots, v_{m} are eigenvectors of $T \in L(V)$, corresponding to distinct eigenvalues, thatn $\left(v_{1}, \ldots, v_{m}\right)$ is linearly independent.

- any $T \in L(V)$ has at most $\operatorname{dim} V$ distinct eigenvalues.
- every $T \in L(V)$, for V a complex vector space, admits an eigenvalue.
- for any $T \in L(V), V$ a complex vector space, there is a basis of $V, B=\left(v_{1}, \ldots, v_{n}\right)$ such that $[T]_{B}$, the matrix of T relative to B, is upper-triangular. In particular, $T\left(v_{i}\right) \in \operatorname{span}\left(v_{1}, \ldots, v_{i}\right)$, for each i, and $\operatorname{span}\left(v_{1}, \ldots, v_{i}\right)$ is T-invariant, for each i.
- Suppose that the matrix of T relative to the basis B is upper-triangular. Then, the eigenvalues of T are precisely the diagonal entries of this matrix.
- $T \in L(V)$ has a diagonal matrix with respect to some basis of V if and only if V admits a basis of eigenvectors.
- $T \in L(V)$ has a diagonal matrix with respect to some basis of V if and only if

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{null}\left(T-\lambda_{1} \operatorname{id}_{V}\right)+\ldots+\operatorname{null}\left(T-\lambda_{k} \operatorname{id}_{V}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{k}$ are the distinct eigenvalues of T.

- 0 is an eigenvalue of $T \in L(V)$ if and only if $\operatorname{null}(T) \neq\{0\}$.

