
Math 110, Fall 2013. Jordan Form Review

First and foremost:

- make sure that you know how to determine the matrix [T ]B of an operator T ∈ L(V )
with respect to a basis B.

- make sure that you know how to find bases of null spaces of operators/matrices (this is
Math 54 stuff - ie, row-reduction).

Things you must know:

Ch. 6 - inner products, inner product spaces, norm, orthogonality, Euclidean inner product, inner
product space = geometry, orthonormal bases, Gram-Schmidt, orthogonal complement,
orthogonal projection, functionals, adjoints.

Ch. 7 - self-adjoint operators, normal operators, Spectral Theorems (real/complex), normal
operators on real inner product spaces.

Ch. 8 - generalised eigenvalues, nilpotent operators, characteristic polynomial, minimal polyno-
mial, Jordan form, Jordan basis.

Remark: since the final exam is cumulative you are also expected to ‘know’ all of the previous
material(!). Of course, you should spend the majority of your time going over the material from
Ch. 6-8, but you should definitely not have forgotten about things like linear (in)dependence,
spans, bases, T -invariant, eigenstuff, etc.

Theorems

Ch. 6 - Pythagoras’ Theorem, Cauchy-Schwartz, triangle inequalities, parallelogram equal-
ity.

- orthogonal lists are linearly independent (but not conversely!).

- Gram-Schmidt process.

- orthonormal bases ALWAYS exist for an inner product space (in particular, if you
have an inner product space, you should be thinking ‘choose an orthonormal basis
B = (v1, ... , vn) of V ’).

- orthonormal lists can be extended to orthonormal bases (note, you must start with
an orthonormal list!).

- if T admits an upper-triangular matrix with respect to some basis, then it admits
an upper-triangular matrix with respect to some orthonormal basis.

- V = U ⊕ U⊥ for any subspace U of V .

- (U⊥)⊥ = U. In words ‘the complement of the complement is what you started
with’.

- the orthogonal projection of v onto U is the vector in U that is closest to v (Prop.
6.36). In particular, if the orthogonal projection of v onto U is v , then v ∈ U; if
the orthogonal projection of v onto U is 0 then v ∈ U⊥.

- if (v1, ... , vn) is an orthonormal basis, and v ∈ V , then

v = 〈v , v1〉v1 + ... + 〈v , vn〉vn
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- if v ∈ V is such that 〈u, v〈= 0, for every u ∈ V , then v = 0.

- every linear functional α ∈ L(V , F ) is of the form α = 〈−, v〉, for some unique v ∈
V . That is, if α ∈ L(V , F ), then there is a unique v ∈ V such that, α(u) = 〈u, v〉,
for every u ∈ V .

- properties of the adjoint (p. 119)

- Proposition 6.46 (know how to replicate the proof given)

- if T ∈ L(V , W ) and B ⊂ V , C ⊂W are orthonormal bases, then

[T ∗]BC = [T ]CB
t
, (conjugate transpose)

Ch. 7 - eigenvalues of self-adjoint operators are real.

- T ∈ L(V ) is normal if and only if ||Tv || = ||T ∗v ||, for every v ∈ V .

- if T is normal then nullT = nullT ∗.

- if T is normal then rangeT = rangeT ∗.

- if T is normal then nullT ∩ range(T ) = {0} (since range(T ) = null(T ∗)⊥).

- if T is normal and v ∈ V is an eigenvector so that T (v) = λv , then T ∗(v) = λv .

- if λ1, ... ,λk are distinct eigenvalues of T , where T is normal, and v1, ... , vk are
corresponding eigenvectors, then 〈vi , vj〉 = 0, for i 6= j . In words: ‘eigenvectors of
normal operators associated to distinct eigenvalues are orthogonal’.

- (Complex Spectral Theorem) if V is complex, T ∈ L(V ). Then, T is normal if and
only if V admits an orthonormal basis of eigenvectors of T . This implies that, if T
is normal then there is an orthonormal basis B of V such that [T ]B is a diagonal
matrix.

- Let T be normal operator on complex vector space. Then, T is self-adjoint if and
only if all of its eigenvalues are real.

- (Real Spectral Theorem) if V is real, T ∈ L(V ). Then, T is self-adjoint if and only
if V admits an orthonormal basis of eigenvectors of T . This implies that, if T is
self-adjoint then there is an orthonormal basis B of V such that [T ]B is a diagonal
matrix.

Ch. 8 - let dim V = n. Then, Ẽλ = null(T − λ)n.

- if null(T − λ)j = null(T − λ)j+1, then null(T − λ)j = null(T − λ)i , for every i ≥ j .

- if N is nilpotent then NdimV = 0 ∈ L(V ).

- let T be an operator whose distinct eigenvalues are λ1, ... ,λk . The characteristic
polynomial of T is

χT =
k∏

i=1

(z − λi )
di ,

where di = dim Ẽλi
.

- di is the number of times that λi appears on the diagonal of an upper-triangular
matrix representing T .

- χT has degree dim V . Hence, d1 + ... + dk = dim V .
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- (Cayley-Hamilton) we have

χT (T ) =
k∏

i=1

(T − λi )
di = 0 ∈ L(V ).

- there is a basis of V consisting of generalised eigenvectors of T . In particularm
there exists a basis B of V such that

[T ]B


A1

A2

. . .

Ak


where each Ai is a square matrix of size di = dim Ẽλi

.

- generalised eigenspace are T -invariant.

- the minimal polynomial of T is

mT =
k∏

i=1

(z − λi )
ei ,

where 1 ≤ ei ≤ di , for each i .

- ei is the smallest integer such that Ẽλi
= null(T − λi )

ei .

- if p ∈ P(C) is a polynomial such that p(T ) = 0 ∈ L(V ). Then, mT divides p. In
particular, if p(T ) = 0 ∈ L(V ), then the eigenvalues of T are a subset of the roots
of p.

- Jordan form (see the note on the Jordan form on my website).
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