
HW3. Math 110, Fall 2013. Additional Problem Solution

Let V ,W be vector spaces (over F ) and U1,U2 subspaces such that V = U1 ⊕ U2. Denote

L = L(V ,W ), L1 = L(U1,W ), L2 = L(U2,W ).

We want to find subspaces of L, K1 and K2 say, such that Li is isomorphic to Ki , and L =
K1 ⊕ K2.

We take
K1 = {T ∈ L | T (v) = 0W , for any v ∈ U2},

K2 = {T ∈ L | T (v) = 0W , for any v ∈ U1}.

These are both subspaces of L: we show that K1 is a subspace, the proof being (essentially)
the same for K2. So, let T ,S ∈ K1,λµ ∈ F , we want to show that λT + µS ∈ K1. Now, if
v ∈ U2, then

(λT + µS)(v) = λT (v) + µS(v) = λ0W + µ0W = 0W

Hence, λT + µS ∈ K1.

Let T ∈ L. As V = U1 ⊕ U2, we can write any v ∈ V uniquely as v = u1 + u2, for some
(unique!) u1 ∈ U1, u2 ∈ U2. Define T1,T2 ∈ L as follows: for v = u1 + u2 ∈ V ,

T1(v) = T (u1), T2(v) = T (u2).

This definition is well-defined since there is only one choice u1 ∈ U1, u2 ∈ U2 for which
v = u1+u2. It is straightforward to check that T1,T2 ∈ L (ie, they are linear maps). Moreover,
if v ∈ U2 then v = 0 + v ∈ U1 + U2 is its unique decomposition into a sum of elements from
U1 and U2 and T1(v) = 0. Hence, T1 ∈ K1. Similarly, we find that T2 ∈ K2. Hence, we have
shown that L = K1 + K2. Now, suppose that T ∈ K1 ∩ K2. Then, for any v ∈ U1, we have
T (v) = 0 (since T ∈ K2) and for any v ∈ U2 we have T (v) = 0 (since T ∈ K1). In particular,
if v = u1 + u2, u1 ∈ U1, u2 ∈ U2, then T (v) = T (u1 + u2) = T (u1) + T (u2) = 0 + 0 = 0. So,
T is the zero linear map and K1 ∩ K2 = {0}. Hence, L = K1 ⊕ K2.

Now, we show that Li is isomorphic to Ki , for i = 1, 2: thus, we must describe an invertible
linear map

fi : Li → Ki , for i = 1, 2.

Define f1 as follows: to any S ∈ L1 we can extend S to a linear map S̃ ∈ L, so that S̃(v) = 0, for
any v ∈ U2 (ie, choose a basis (b1, ... , bm) of U1 and extend to a basis (b1, ... , bm, bm+1, ... , bn)
of V and define S̃(bi ) = S(bi ), for i = 1, ... ,m, and S̃(bi ) = 0, for i > m). Hence, S̃ ∈ K1.
We can do a similar extension for any R ∈ L2 to obtain a linear map R̃ ∈ L such that R̃(v) = 0,
for any v ∈ U1. We now define

f1(S) = S̃ , f2(R) = R̃, S ∈ L1,R ∈ L2

We have to show that fi is linear and invertible.

Let S , S ′ ∈ L1 and denote Z = S + S ′ ∈ L1. Then, Z̃ ∈ K1 is the linear map such that, for
u1 ∈ U1, u2 ∈ U2,

Z̃ (u1 + u2) = Z̃ (u1) + Z̃ (u2) = (S + S ′)(u1) + 0 = S(u1) + S ′(u1)

We also have

(S̃ + S̃ ′)(u1 + u2) = S̃(u1 + u2) + S̃ ′(u1 + u2) = S(u1) + S ′(u1)
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so that Z̃ = S̃+S̃ ′. That is, f1(S+S ′) = f1(S)+f1(S ′). We can also show that f1(cS) = cf1(S)
by similar considerations. Hence, f1 is linear. In an analagous way we can show that f2 is linear.

we now show that fi are invertible, considering the case of f1 first:

f1 injective: let S ∈ L1 and suppose that f1(S) = 0 ∈ L is the zero linear map. Thus, for any
v ∈ U1 we have

0 = f1(S)(v) = S̃(v) = S(v) =⇒ S = 0 ∈ L1.

Similarly, we can show that f2 is injective.

f2 is surjective: let T ∈ K1, we want to find S ∈ L1 such that f1(S) = T , ie, S̃ = T . Define,
for any v ∈ U1, S(v) = T (v). Then, S ∈ L1 (ie S is linear) and

S̃(u1 + u2) = S(u1) = T (u1) = T (u1 + u2), since T ∈ K1.

Hence, S̃ = T . In a similar way we can show that f2 is surjective. Hence, fi are linear and
invertible, therefore they are isomorphisms.
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