
Worksheet 11/13. Math 110, Fall 2013. SOLUTIONS

These problems are intended as supplementary material to the homework exercises and
will hopefully give you some more practice with actual examples. In particular, they may be
easier/harder than homework. Send me an email if you have any questions!

Gram-Schmidt; orthogonal projections

Throughout this worksheet V will always be a finite dimensional vector space over F = R,C.

1. a) Consider the Euclidean space (R3, ·). Perform the Gram-Schmidt process on the following
linearly independent list

(v1, v2, v3)
def
=

 1
−1
0

 ,

 1
0
−1

 ,

1
0
1


Find the point in U = span(v1, v2) that is closest to the standard basis vector e2 (distance is
with respect to the dot product).

b) Consider the inner product space (R3, 〈, 〉), where

〈x , y〉 = 2x1y1 − x2y1 − x1y2 + x2y2 + x3y3, for x , y ∈ R3

- verify that this defines an inner product on R3 (Hint: to show the ’positive definite’
property (〈x , x〉 ≥ 0) you will need to ’complete the square’.)

- What is ||e1||, ||e2||, ||e3||, where (e1, e2, e3) is the standard basis of R3, with respect to
this inner product?

- Is the list (e1, e2, e3) orthogonal with respect to this inner product?

- Find an orthonormal basis (z1, z2, z3) of R3 (with respect to 〈, 〉 above) such that z1 ∈
span(e1), z1, z2 ∈ span(e1, e2).

- Find the point in W = span(e1, e2) that is closest to e3 (distance is with respect to the
norm induced by 〈, 〉).

Solution: a) We will obtain an orthonormal basis (b1, b2, b3):

b1 =
v1
||v1||

=
1√
2

v1 =

 1/
√

2

−1/
√

2
0

 ,

b′2 = v2 − v2 · b1b1 = v2 −
1√
2

b1 =

1/2
1/2
−1

 =⇒ b2 =
b′2
||b′2||

=
1√
3/2

b′2 =
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6

1/
√

6

−2/
√

6


b′3 = v3 − v3 · b1b1 − v3 · b2b2 = v3 −

1√
2

b1 +
1√
6

b2 =

2/3
2/3
2/3

 =⇒ b3 =
b′3
||b′3||

=

1/
√

3

1/
√

3

1/
√

3


b) This is the inner product defined by the matrix

A =

 2 −1 0
−1 1 0
0 0 1

 ,
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so that
〈x , y〉 = x tAy .

This implies the bilinearity properties of 〈, 〉. Moreover, since A is symmetric (ie A = At) the
we get 〈x , y〉 = 〈y , x〉.

Suppose that 〈x , x〉 = 0. Then, we have

0 = 2x2
1 − 2x1x2 + x2

2 + x2
3 = 2

(
x1 −

x2
2

)2
+

x2
2

2
+ x2

3

so that
x3 = 0, x2 = 0, x1 −

x2
2

= 0 =⇒ x1 = x2 = x3 = 0.

Moreover, we see that 〈x , x〉 ≥ 0, for every x .

We have

||e1|| =
√
〈e1, e1〉 =

√
2, ||e2|| =

√
〈e2, e2〉 = 1, ||e3|| =

√
〈e3, e3〉 = 1.

The list is not orthogonal since we have 〈e1, e2〉 = −1 6= 0.

Applying Gram-Schmidt to the list (e1, e2, e3) to obtain an orthonormal basis (z1, z2, z3):

z1 =
e1
||e1||

=
1√
2

e1,

z ′2 = e2 − 〈e2, z1〉z1 = e2 +
e1
2

=⇒ z2 =
z ′2
||z ′2||

=
√

2(e2 +
e1
2

),

z ′3 = e3 − 〈e3, z1〉z1 − 〈e3, z2〉z2 = e3 =⇒ z3 =
z ′3
||z ′3||

= e3.

The point w ∈ span(e1, e2) closest to e3 is

w = 〈e3, z1〉z1 + 〈e3, z2〉z2 = 0.

2. Let (v1, v2, v3) ⊂ R3 be linearly independent, where we are considering the Euclidean space
R3 (ie, inner product space with inner product = dot product). Describe all orthonormal lists
(e1, e2, e3) ⊂ R3 such that e1 ∈ span(v1). (Hint: what are the possible choices for e1, e2, e3? )

Solution: Since we need e1 ∈ span(v1) then we must have

e1 = ± v1
||v1||

.

Now, we need to choose e2, e3 such that e2 ∈ span(v1)⊥ and e3 ∈ span(v1)⊥, and with
e2 · e3 = 0. Hence, we have that span(v1)⊥ is a two dimensional subspace of R3 (because
dimR3 = dim U + dim U⊥, for any subspace U), ie, a plane, that is orthogonal to e1. For
any choice of unit length e2 ∈ span(v1)⊥ there are precisely two vectors in this plane that are
orthogonal to e2 and have unit length. However, we need only that e2 lies in the unit circle
inside this plane span(v1)⊥. Thus, there are an infinite number of possible choices.

3. Consider the orthonormal list in Euclidean space C3 1/
√

2
0

−
√
−1/
√

2

 ,

 1/
√

2
0√
−1/
√

2


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Extend this list to an orthonormal basis of C3.

Find an orthonormal basis vector of null(A
t
), where A is the 3×2 matrix with the above vectors

as its columns. What do you notice? Can you explain this? (Hint: adjoints!)

Solution: There are a couple of ways to proceed - the easiest is to compute span(v1, v2)⊥,
where (v1, v2) are the orthonormal vectors listed above. Why? Since then we will have find the
set of all vectors that are orthogonal to both v1 and v2. If we choose one of these, call it v3
say, and such that ||v3|| = 1, then we have that (v1, v2, v3) is an orthonormal list.

So, let’s determine span(v1, v2). We have that

span(v1, v2)⊥ = {v ∈ C3 | v · v1 = 0, v · v2 = 0}

and if v =

a
b
c

 ∈ span(v1, v2)⊥ then we must have

a√
2

+
c
√
−1√
2

= 0,
a√
2
− c
√
−1√
2

= 0.

Hence, we are looking for all solutions to[
1√
2

0
√
−1√
2

1√
2

0 −
√
−1√
2

]
x = 0,

as the above equations are precisely captured in this previous matrix equation. Row-reducing
the above matrix gives us the matrix [

1 0 0
0 0 1

]
so that the solution set of the matrix equation is span(e2). Since e2 has unit length we have
an orthonormal basis

(v1, v2, e2)

Notice that in our discussion we have determine null(A
t
) = span(e2). This holds because

null(T ∗) = range(T )⊥,

where T ∈ L(C2,C3) is the operator defined by A, and range(T ) = span(v1, v2).
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Adjoints; functionals

4. Consider the Euclidean space C3, and let T ∈ L(C3) be defined by the matrix

A =

√−1 −1 0
0

√
−2 + 1 1√

5 −
√
−1 0


(so that T (x) = Ax). Determine the adjoint of T : that is, for any w ∈ C3 what is T ∗(w)?

Solution: We are considering the Euclidean inner product, and if S = (e1, e2, e3) is the standard
orthonormal basis of C3, then we have that

[T ]S = A.

Hence, we have that
[T ∗]S = A

t
.

Therefore, we have that

T ∗(w) = [T ∗(w)]S = [T ]S [w ]S = A
t
w .

5. Let (V , 〈, 〉) be an inner product space, T ∈ L(V ). Suppose that w ∈ null(T ∗), w 6= 0.
Show that range(T ) ⊂ span(w)⊥. By considering this result prove that T is an isomorphism
if and only if T ∗ is an isomorphism. (Note: we are NOT saying that T ∗ is the inverse of T )

Solution: Let v ∈ range(T ). Then, v = T (u), for some u ∈ V . Hence, we have

〈v , w〉 = 〈T (u), w〉 = 〈u, T ∗(w)〉 = 〈u, 0〉 = 0 ∈ F .

Hence, we have that v ∈ null(T ∗)⊥ and since v is arbitrary, we have range(T ) ⊂ span(w)⊥.
Suppose that T is an isomorphism. Then, we must have that range(T ) = V . If w ∈ null(T ∗)
then we have V = range(T ) ⊂ span(w)⊥, so that span(w)⊥ = V . In particular, 〈w , w〉 = 0
so that w = 0. Hence, null(T ∗) = {0} and T ∗ is an isomorphism. To prove the other direction
we replace T by T ∗, and can show that is we assume T ∗ is an isomorphism then (T ∗)∗ = T
is an isomorphism.

6. Let (V , 〈, 〉V ) and (W , 〈, 〉W ) be inner product spaces, T ∈ L(V , W ). Suppose that
T ∗T = IV (the identity on V ). Prove that TT ∗ ∈ L(W ) is the ‘orthogonal projection onto
U = range(T )’ operator; that is, TT ∗ = PU , where PU is the orthogonal projection operator
defined in Ch. 6 of Axler.

Solution: Suppose that T ∗T = IV . Let w = T (v) ∈ range(T ). Then, for any z ∈W we have

〈TT ∗(w), z〉 = 〈TT ∗T (v), z〉 = 〈T (v), z〉 =⇒ 〈TT ∗(w)− T (v), z〉 = 0.

Hence, we must have that TT ∗(w) = T (v) = w , for any w ∈ range(T ) = U. Hence,
range(TT ∗) = range(T ) = U.

We also have that null(T ∗) = range(T )⊥. And we obtain

null(T ∗) ⊂ null(TT ∗) ⊂ null(T ∗TT ∗) = null(IV T ∗) = null(T ∗).

Hence, range(T )⊥ = null(T ∗) = null(TT ∗). Now, we need only show that (TT ast)2 = TT ∗

to show that TT ∗ = PU , by some homework exercise. Indeed, we have

(TT ∗)2 = TT ∗TT ∗ = T (IV )T ∗ = TT ∗.

4


