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Preface

Israel M. Gelfand, at his 90th anniver-
sary symposium, after the talk by Rob-
bert Dijkgraaf on string theory:

We should all learn from Rob-

bert. All these strings, schmings will

go away, but the beautiful mathemat-

ics remains.

Creative urges often grow out of frustration. I encouraged my son
to proceed with his college physics sequence by taking a first course
in quantum mechanics. Browsing his required textbook, however,
proved disappointing. So, by the spring break I was finishing my
own.

The introductory quantum mechanics course I envisioned had to
culminate at the hydrogen atom model, and show how the periodic
system of elements can be explained by solving at the quantum level
that same Kepler problem, solving which at the classical level allowed
one to understand the solar system. This route from Newton to
Schrödinger would also highlight the development of mathematics
from multivariable calculus to the elements of representation theory.

Mathematicians are usually familiar with the machinery of quan-
tum mechanics. In particular, quantum-mechanical notation is fre-
quent in my own research papers. This doesn’t mean at all that I
understand quantum physics. So, I was compelled to read the very
same textbook that mine was meant to augment or even replace.

Most undergraduate textbooks are “once you put it down, you
simply can’t pick it up” kinds of beasts. I suspect there is a close
connection between the weight of a text in pounds and the number of
digits used to label displayed formulas in it, or the factor by which it
can be reduced without damaging the content. Some of my colleagues
cynically admit that they cannot read the texts they teach from. But
having put on the shoes of a student, I didn’t have a choice.

Soon I encountered more fundamental difficulties. The subject
begins with a description of some celebrated experiments which are
meant to convince the student that quantum phenomena exist. Most
experiments involve photons, which, naturally, move with the speed
of light. Therefore they are relativistic creatures. The trouble was
the quantum mechanics presented in the course was non-relativistic.
Not only did I understand little at the beginning — there was little
hope to understand anything by the end of it.
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Consequently, to the mission of introducing quantum mechanics
the way I myself wanted to be taught, there joined another one: to
learn enough theory so that I could make sense of the early history
of the subject including those experiments. My understanding of the
latter is presented in the last, 14th section, which may be viewed
as a supplement to the first thirteen. But it cannot be logically
moved up in the pile: something from each of the previous sections
is summoned there. Yet, something doesn’t mean everything; in the
contrary, heeding Gelfand’s advice, in the rest of the book I did
not hesitate to demonstrate the beauty and depth of mathematics
somewhat beyond the bare practical necessity.

As a result, the mathematical temperature in the book gradually
rises. If the starting level is the standard multivariable calculus and
linear algebra, section 2 introduces Poisson brackets, and the idea of
a group. Section 3 brings in asymptotics of oscillating integrals. Sec-
tion 5 de facto applies the Fourier method to solving simple PDEs.
By the way, the content here is fully plagiarized from that required
textbook, though the computations are much improved. Section 6
teaches Hermitian linear algebra. In section 7 about bosons and
fermions, tensor products make their appearance together with rudi-
ments of super-geometry. A concise theory of spherical harmonics
is developed in section 8 about the hydrogen atom, and the full-
fledged classification of irreducible representations of the special uni-
tary group SU2 is built from scratch in section 9 in connection with
spin. A minimalist’s introduction to special relativity in section 10
reaches at least the formulation of the Dirac equation and links it to
quaternions introduced earlier in section 9. Section 11 on quantum
statistics makes use of partition functions, as well as tensor algebra
developed in section 7. The band structure of solids is discussed
in section 12 only after an exposition of the spectral theory of pe-
riodic one-dimensional potentials in terms of monodromy matrices
and SL2(R), and is followed by an essay on the KdV equation. In
section 13, meant to be both the epilogue to this and prelude to a
higher level course, the calculus of variations (neglected up to that
point) finally appears together with the least action principle, Feyn-
man’s path integrals, and what mathematicians call Wick’s theorem:
the graph summation formula for the asymptotical expansion of an
oscillating integral.

None of this is assumed to be known beforehand. Rather, the
reader is expected to be willing and ready, if not to fully absorb,
then at least to make peace with new concepts after an informal
explanation and a couple of examples.

vi



Respectively, in this book, my concern for mathematical rigor
does not exceed that of a true physicist — a feature that might dis-
please a true mathematician. Yet, this is not a genuine physics text.
To build a valid theory of a phenomenon, physicists must be mindful
of the effects which were neglected by their model. This requires es-
timation of the orders of magnitudes, competence in measurements,
materials, units. My effort in this direction was microscopic, so a
true physicist won’t be pleased either. Thus, my only hope is that a
true student would find, that the two shortcomings counterbalance
each other nicely, and enjoy approaching the subject the same way
that I would find enjoyable.

Alexander Givental
Department of Mathematics
University of California Berkeley
March 2019

P.S. At the end of the book, the reader will find a collection of exer-
cises, and a set of sample solutions, which were added in the process
of teaching an upper-division course at UC Berkeley based on this
text in the Fall semester of 2020.
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1 Geometrical optics

Waves or particles? This debate about the nature of light has a
long history that by 2-3 centuries precedes the discovery of quantum
phenomena. The dilemma can be easily illustrated and even resolved
within the realm of classical mechanics, and geometrical optics is a
convenient place to start.

Everyone saw how a pebble dropped into water generates a circu-
lar wavelet. In 1678, Dutch mathematician and physicist Christiaan
Huygens suggested that propagation of light can be explained as the
superposition of similar locally generated waves. Namely, according
to Huygens’ principle, one assumes that the current state of a wave-
like disturbance in a medium is described by a wave front, the locus
of points where the disturbance has reached by the current moment,
and then stipulates that each point of the wave front becomes the
source of a spherically spreading wavelet. The position of the wave
front at a later moment (say, after one second) is then described
as the outer boundary of the region disturbed by all these spherical
wavelets together. Each point of the new wave front, in its turn,
becomes the source of a spherical wavelet (Figure 1).

wave front

a second later

initial 

two seconds later

Figure 1: Huygens’ principle

Now suppose that we position an observer at a point q in space,
and want to find out how soon such propagation of the wave fronts
will reach him. To answer this question, we should find the shortest
path from q to the initial wave front, and divide the length of the path
by the speed of wavelets’ expansion (i.e. the speed of light if this is
the phenomenon we are talking about). Of course, the shortest path
will be straight, and moreover, it must be perpendicular to the initial
wave front. Indeed (Figure 2), a straight segment connecting q with
a point x on the initial wave front can be made shorter by moving
the point x along the front unless the angle between the segment and
the tangent to the front at x is 90◦.

1
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x’

qx

Figure 2: |q − x′| < |q − x|

In fact, since each wave front becomes the “initial” one at the ap-
propriate moment, it follows from Huygens’ principle, that the short-
est segment will be perpendicular to all intermediate wave fronts.
Thus, given the initial wave front, one way to describe the position
of the wave front t seconds later would be to draw all straight lines
perpendicular to the initial one, and mark on each of them the same
distance (equal to ct, where c is the speed of light). As time t varies,
we obtain a family of wave fronts (in space, they will be the surfaces
equidistant from the initial front) together with the family of lines
(geometers say: pencil of rays) perpendicular to the family of wave
fronts.

rays

wave fronts

the caustic

Figure 3: A pencil of rays

On Figure 3, an example of a pencil of rays emanating from a
parabola and perpendicular to the family of wave fronts equidistant
from the parabola are shown. The dashed bold line is enveloping the
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rays, and is called the caustic: the density of rays near it become
infinite. In the region behind the caustic, through each point several
rays are passing.

We see that the same instance of light propagation can be de-
scribed in two related yet different ways: either in terms of a family
of wave fronts, or as a pencil of light rays. The fronts convey the
impression of a wave propagating through space, while the rays can
be perceived by the observer as trajectories of particles emitted from
the initial front as the source of light. These seemingly conflicting
descriptions of the process are in fact logically consistent and even
equivalent, as they represent two aspects of a single mathematical
object: the optical distance function.

The eikonal equation. For the sake of simplicity, let us use
the system of units in which the speed of wave propagation c = 1,
and denote by S(q) the “optical distance” |q−x| from the position of
the observer along a particular ray perpendicular to the initial wave
front at the point x. In this system of units, S(q) is the time the
light particle travels from x to q along this ray. We consider S as a
function in space, and in the example of Figure 3 (where the space
is 2-dimensional), the graph of this function is shown on Figure 4.

S

Figure 4: The swallow-tail

Comparing this picture (known as the swallow-tail) with Figure
3, one can notice that the function S, single valued in the region
before the wave fronts reach the caustic, becomes triple-valued in
the region beyond the caustic. This is because through every point
q in the latter region, there pass three different rays, each bringing
its own value of optical distance from the source to the point.

In terms of the optical distance function, the wave fronts are
described as its level sets S(q) = const. It might be challenging to
imagine how these level sets look in the region where the function
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becomes triple-valued (try to meet this challenge using the name of
the graph as a hint). Yet, the level sets everywhere have well-defined
normal directions: these are the directions of the rays. Moreover,
the optical distance grows along the rays with the speed of light,
i.e. with speed 1 in our dimensionless units. Recalling the notion
of the gradient of a function (which is the vector of length equal the
maximal rate of growth of the function, and is always perpendicular
to the level sets of it), we conclude that the gradient |∇qS| = 1, or
equivalently, |∇qS|2 = 1. This is known as eikonal equation.

In more realistic situation of wave propagation in space (with
coordinates q = (x, y, z)), the optical distance function S(x, y, z)
satisfies the eikonal equation

(

∂S

∂x

)2

+

(

∂S

∂y

)2

+

(

∂S

∂z

)2

= 1,

which is a nonlinear 1st order partial differential equation. Any so-
lution to this equation describes a family of wave fronts, which are
level surfaces of the solution, as well as a pencil of rays perpendicular
to them. Thus, mathematically speaking, geometrical optics studies
solutions to the eikonal equation. Any such a solution can be con-
structed from the initial wave front as the distance function to the
front, which grows linearly with rate 1 along each ray perpendicular
to the initial front.

In fact this particle-based approach is a special example of a gen-
eral method (known as the method of characteristics) of reducing a
single 1-st order partial differential equation to an ordinary differ-
ential equation (i.e. an equation whose solutions can be interpreted
as trajectories of particles). In the next section, we will discuss this
method in the context of Hamilton’s approach to classical mechanics.
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2 Hamiltonian mechanics

Hamilton equations. Newton’s equation F = ma can be inter-
preted as a second order ordinary differential equation

mq̈ = F (q)

whose solutions represent trajectories t 7→ q(t) of a particle of mass
m moving in any given force field F . The equation is deterministic,
i.e. the past and future trajectory are uniquely determined by the
initial conditions at the current moment t0, and can be specified by
the current position q(t0) and current velocity q̇(t0).

In fundamental physics, and in particular in celestial mechanics,
one is primarily concerned with conservative force fields, i.e. the
situation when the vector-valued function F (q) is constructed from
the gradient of a scalar-valued potential energy function: F (q) =
−∇qV . In this case, the equation of motion can be rewritten as the
following system of Hamilton equations:

{

q̇ = ∂H/∂p
ṗ = − ∂H/∂q

.

Here p is the momentum vector, p = mq̇, and H(p, q), called the
Hamilton function or the hamiltonian of the system, is a scalar-valued
function, namely the total (kinetic plus potential) energy:

H(p, q) =
p2

2m
+ V (q) =

mq̇2

2
+ V (q).

The last formula is written as if there is only one q and one p (which
would be true for a particle moving on a line), but also makes sense
for a particle in space, if the vector notation is assumed. In com-
ponents, we would have q = (q1, q2, q3), p = (p1, p2, p3), the no-
tation p2/2m for the kinetic energy would hide the dot-product:
(p · p)/2m = (p21 + p22 + p23)/2m, and the Hamilton system would
consist of 6 first order ordinary differential equations: q̇i = ∂H/∂pi,
ṗi = −∂H/∂qi. Taking into account the explicit form of the Hamil-
ton function, we find q̇ = p/m, ṗ = −∇qV , which combine into
Newton’s 2nd order equation mq̈ = −∇qV .

5



q

p

p

q

(d) Harmonic oscillator

(b) Infinite well

p

q

−a +a

V

−V
0

+a0−a

V

q

q

(c) Finite well

q

p

q

V V

(a) Free particle

Figure 5: One degree of freedom

Examples in one degree of freedom.

A free particle on the line: H(p, q) = p2

2m . There is no force field
here, the equations of motion is q̇ = p/m, ṗ = 0, i.e. q̈ = 0, and the
solutions q(t) = q(0) + vt describe the motion of the particle on the
line with some constant speed v, i.e by inertia (Figure 5a).

One-dimensional billiard. Imagine the graph of the potential en-
ergy function as a “well” with the walls of infinite height (Figure
5b). The particle is still “free”, but in the totalitarian meaning of
this word, as it is forced to stay on the interval (−a, a) of the q-axis.
The physical phenomenon best described by this system is that of a
billiard ball bouncing off the walls of the “well”.
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The finite square well (Figure 5c):

V (q) =

{

0 |q| > a
−V0 |x| < a

.

When the particle is outside the well and has the initial kinetic energy
greater than V0 it will speed up while moving through −a < q < a,
but past the well will slow down to the initial velocity. However, a
particle with the kinetic energy below V0 will bounce between the
walls q = ±a like the billiard ball in the case of the infinitely deep
potential well.

The harmonic oscillator:

H(p, q) =
p2

2m
+K

q2

2
,

where K, in the interpretation of the oscillator as a mass-spring sys-
tem, is the rigidity coefficient of the spring. The equations of motion
are q̇ = p/m, ṗ = −Kq, i.e. q̈ = −(K/m)q. The trajectories on the
pq-plane are ellipses H = const (Figure 5d), and all the motions are

periodic with the same angular frequency ω =
√

K/m.

The Kepler problem. Perhaps the most interesting mechanical
system we will encounter is the motion of a particle in 3-space under
the central force inverse proportional to the square distance to the
center:

H(p, q) =
p · p
2m

− G

|q| .

The Hamilton equations have the form q̇ = p/m, ṗ = −Gq/|q|3, and
show that the angular momentum vector L := q × p is conserved:

L̇ = q̇ × p+ q × ṗ = (p/m)× p− q ×Gq/|q|3 = 0.

One consequence of this is that the direction of the cross-product
q × p does not change in time, i.e. each trajectory remains in the
plane determined by the initial position of the vectors q0 and p0.
This reduces the problem from three to two dimensions.

The fact that not only the direction, but also the magnitude
|L| of the angular momentum 3-vector is conserved, translates into
Kepler’s 2nd law: the sectorial velocity is constant, i.e. the radius-
vector sweeps equal areas in equal times. Using this, one can reduce
the problem further to one degree of freedom, and obtain Kepler’s 1st
law, according to which the trajectories are conic sections (ellipses,
hyperbolas, parabolas) with the origin q = 0 playing role of a focus.
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Namely, let r = (q · q)1/2 denote the distance from the particle to
the origin on the plane of motion. By differentiating twice in time,
we find:

ṙ =
(q̇ · q)
r

, r̈ =
(q̈ · q)
r

+
(q̇ · q̇)
r

− (q̇ · q)2
r3

.

Note that
(q̇ · q̇)(q · q)− (q̇ · q)2 = |q̇|2|q|2 sin2 θ,

where θ is the angle between the radius-vector q and the velocity
q̇. This expression is equal therefore to |L|2/m2, and is conserved
along each trajectory. Combining this with the Newton equation
mq̈ = −Gq/r3, we obtain

mr̈ = −G

r2
+

|L|2
mr3

.

This can be interpreted as the Newton equation of a particle of mass
m with one degree of freedom moving in the potential field with the
effective potential V (r) = −G/r + |L|2/2mr2. The corresponding
Hamilton function (depending on the value of |L|)

H(p, r) =
p2

2m
+

|L|2
2mr2

− G

r

will reappear when we will study the quantum Kepler problem.

The effective equation can be solved by the usual technique of an-
alyzing conservative systems with one degree of freedom. However,
there is an elegant way, due to Joseph Louis Lagrange, to avoid com-
putations and link the solutions directly to conic sections. Namely,
consider the cone in space with coordinates (x, y, r) given by the
equation r2 = x2 + y2, where (x, y) are the components of the
radius-vector q on the plane of the motion. Let a parametric curve
t 7→ q(t) = (x(t), y(t)) represent a solution to the Kepler non-linear
equation mq̈ = −Gq/|q|3 with the sectorial velocity |L|, and respec-

tively r(t) =
√

x(t)2 + y(t)2. Then, as it was noticed by Lagrange,
the there functions x(t), y(t) and r(t) − |L|2/m2 also satisfy the
same linear 2nd order differential equation (with time-dependent co-
efficients)

mü = − G

r3(t)
u.

But solutions of a linear 2nd order ordinary differential equation form
a linear space of dimension two. Therefore the three solutions must

8
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be linearly dependent:

Ax(t) +By(t) + C

(

r(t)− |L|2
m2

)

= 0.

This yields the equation of a plane in the (x, y, r)-space. Its inter-
section with the cone r2 = x2 + y2 is a conic section — typically an
ellipse, or hyperbola. The projection of it to the (x, y)-plane (which is
respectively an ellipse or hyperbola too) is the Keplerian trajectory.

We refer to our paper Kepler’s laws and conic sections for fur-
ther elementary treatment of the classical Kepler problem, and to
an applet by Irina Boyadzhiev, providing a neat visualization of the
results.

Symplectic geometry. At this stage one should begin to won-
der what was the point of rewriting Newton’s 2nd order differential
equation in Hamilton’s form of a system of two 1st order ones, and re-
placing at the same time the velocity q̇ with the momentum p = mq̇.
What difference could this change make?

In fact the Hamilton form of the equations of motion has a num-
ber of important advantages over the old-fashioned, Newtonian ap-
proach. First the mechanical system does not have to consist of one
particle, but could involve many, and not necessarily particles, but
possibly more complicated objects (e.g. spinning tops). Generally
speaking, the letter q represents a point in the configuration space
of the mechanical system, i.e. the space of all possible positions of
the system. (It could have any dimension, referred to as the number
of degrees of freedom of the mechanical system). Respectively, p can
represent the momentum of the mechanical system in some general-
ized sense, so that the pair (q, p) represents a point in the so-called
phase space of the system (whose dimension is always twice the num-
ber of the degrees of freedom). For example, the configuration space
of a soccer team has dimension 22 (two coordinates to specify the po-
sition of each player on the field), while the phase space of the team
is 44-dimensional (to include the momentum vectors). Furthermore,
in the Hamilton equations, the hamiltonian H(p, q) does not have to
be any particular expression resembling the sum of kinetic and po-
tential energy, but could be any differentiable function on the phase
space. Regardless of the expression, the “energy conservation law”
easily follows from the chain rule and the form of the equations of
motion:

d

dt
H(p(t), q(t)) =

∂H

∂p
ṗ+

∂H

∂q
q̇ = −∂H

∂p

∂H

∂q
+
∂H

∂q

∂H

∂p
= 0.

9
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More fundamentally though (and here, risking to sound cryp-
tic, we are going to stretch the reader’s imagination to a dangerous
degree), it turns out that this and many other meaningful proper-
ties which the Hamilton equations possess are explained not by their
specific coordinate form, but are due to some remarkable geometric
structure inherently present in the phase space of any conservative
mechanical system. The structure is called symplectic. For those
familiar with the language of differential forms we can say that it is
a closed differential 2-form. E.g. in the above 44 phase coordinates
(p, q) of the soccer team, it is given by the formula

dp1 ∧ dq1 + · · ·+ dp22 ∧ dq22.
For those unfamiliar, we can vaguely say that it is some kind of anti-
symmetric analog of the dot-product, and a device for computing
signed areas of 2-dimensional surfaces in the phase space. This ge-
ometric approach brings into classical mechanics a lot of flexibility,
which we are only going to illustrate here with the simplest non-
trivial example.

Hamilton equations on S2. On a 2-dimensional sphere, one
cannot introduce a coordinate system (p, q) which would make the
sphere look like the space of positions and velocities of a particle. Yet,
regions of the sphere have areas, which make it a symplectic surface,
and hence a legitimate phase space of a Hamiltonian mechanical
system with one degree of freedom. For example, on the sphere
x2 + y2+ z2 = 1, consider the coordinate z as the Hamilton function
and find the corresponding equations of motion.

Though unskilled in symplectic geometry, we can rely on the
geometric fact known to the ancient Greeks: the axial projection
of the sphere onto the cylinder of the same radius (see Figure 6)
distorts shapes of regions, but preserves their areas. On the cylinder,
introduce the coordinates (p, q), taking q to be the polar angle on
the xy-plane, and p = z. Thus, in such coordinates, the cylinder is
developed into the rectangle 0 ≤ q ≤ 2π, −1 ≤ p ≤ 1. The point on
the sphere, represented by (p, q), is found by the formulas z = p, x =
√

1− p2 cos q, y =
√

1− p2 sin q. In any case, the Hamilton function
z in the cylindrical coordinates (p, q) coincides with H(p, q) = p,
and the Hamilton equations assume the form: q̇ = ∂H/∂p = 1, ṗ =
−∂H/∂q = 0. The solutions are very simple: q(t) = q0+ t, p(t) = p0,
and describe translation with speed 1 in the angular direction. The
corresponding motion on the sphere is the steady rotation about the
z axis with the angular velocity 1. The phase trajectories are shown
on Figure 6 as parallel horizontal circles.

10



z p

q

Figure 6: A Hamiltonian system on the sphere

One should ask here whether the equations of motion will remain
the same if we choose to project the sphere onto another cylinder, e.g.
the one around the x-axis. The answer is “yes”, as the motion can be
described geometrically without any reference to cylinders. Namely,
by the energy conservation law, the trajectories are the level curves
z = const of the Hamilton function. The speed of motion along each
trajectory is determined by the local density of the level curves: the
phase flow on the sphere must preserves areas.

The latter fact is clear for the rotations on the sphere, but it is
a manifestation of the general property of the phase flows of Hamil-
tonian mechanical systems: they preserve the geometric structure
we called symplectic. In particular they preserve the phase volume
of regions in the phase space. Indeed, the vector field with compo-
nents q̇i = ∂H/∂pi, ṗi = −∂H/∂qi has divergence

∑

i ∂
2H/∂pi∂qi −

∑

i ∂
2H/∂qi∂pi = 0 by Clairaut’s theorem. By Gauss’ divergence

theorem, the flow of such a vector field is volume-preserving. By the
way this fact serves as the foundation for statistical mechanics.

Poisson brackets. There is, perhaps, a more accessible, alge-
braic way to describe the structure present in the phase spaces of
Hamiltonian mechanics. Namely, let us think of infinitely differen-
tiable functions F (p, q) on such a phase space as physical quantities
(they are called classical observables). For example, for a particle in
R
3, the components of the angular momentum vector L = q × p are

11



such observables:

L1 = q2p3 − q3p2, L2 = q3p1 − q1p3, L3 = q1p2 − q2p1.

When a point (p, q) of the phase space evolves in time according to
the Hamilton equations q̇i = ∂H/∂pi, ṗi = −∂H/∂qi, so does the
value of an observable F at that point. The differential equation
governing this change is found from the chain rule:

dF

dt
=

∑

i

(

∂F

∂qi
q̇i +

∂F

∂pi
ṗi

)

=
∑

i

(

∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)

.

The last expression is called the Poisson bracket of H and F , and is
denoted as {H,F}. Thus, Ḟ = {H,F} describes the evolution of all
observables. The Hamilton equations q̇i = {H, qi}, ṗi = {H, pi} are
just special cases when the coordinates are taken for the observables.

Clearly, Poisson brackets are anti-commutative and distributive:

{F,G} = −{G,F}, and {H,F +G} = {H,F} + {H,G}.

It is not too hard to check that they also satisfies the Jacobi identity:

{H, {F,G}} + {G, {H,F}} + {F, {G,H}} = 0 for any F,G,H.

In fact these properties amount to the definition of a Lie algebra.
Beside this, the Poisson bracket is also a bi-differentiation, i.e. with
respect to either operand, satisfies the product (Leibniz’) rule:

{H,FG} = {H,F}G + F{H,G}.

This should not be surprising, since it simply says that d(FG)/dt
= (dF/dt)G + F (dG/dt) when the phase points move according to
the Hamilton equations with the Hamilton function H.

Our point now is that an operation {·, ·} with the above properties
given on the algebra of infinitely differentiable functions on some ge-
ometric space makes this geometric space a legitimate phase space of
Hamiltonian mechanics (regardless of any specific coordinate formula
for the bracket). Namely, given any hamiltonian H, the evolution of

all observables is defined by the equation Ḟ = {H,F}. Moreover,
the following remarkable properties of Hamiltonian mechanics follow
trivially:

• The energy conservation law: {H,H} = 0 (due to the anti-
symmetry).

12



• Noether’s theorem — symmetries generate conservation laws.
I.e., if the Hamiltonian flow defined on the phase space by a function
F leaves our hamiltonian H invariant ({F,H} = 0), then F is a
conservation law of our Hamiltonian system ({H,F} = 0).

• Poisson’s theorem: If F and G are conservation laws of the
Hamiltonian system with the Hamilton function H (i.e. {H,F} =
0 = {H,G}), then (as it follows from the Jacobi identity) their Pois-
son bracket {F,G} is a conservation law too: {H, {F,G}} = 0.

For example, if two components of the angular momentum are
conserved, then the third one is conserved as well. Indeed, the fol-
lowing “commutation relations” are straightforward to check:

{L1, L2} = −L3, {L2, L3} = −L1, {L3, L1} = −L2.

By the way, they coincide with the cross-product rules: e1× e2 = e3,
etc. for ei = −Li.

Let us re-examine Hamiltonian mechanics on the sphere S2 from
this new point of view. In the 3-space with coordinates x, y, z, define
the Poisson bracket by the cross-product scheme:

{x, y} = z = −{y, x}, {y, z} = x = −{z, y}, {z, x} = y = −{x, z}.

It is a general fact that once the (anti-symmetric) Poisson brack-
ets between coordinates (say, xi) are defined and obey the Jacobi
identity, the operation can be extended to a Poisson bracket on all
functions using Leibniz’ rule:

{F,G} =
∑

i,j

∂F

∂xi

∂G

∂xj
{xi, xj}.

In particular we can check that r2 = x2 + y2 + z2 has zero Poisson
bracket with x, y, z:

{x, r2} = 2x{x, x} + 2y{x, y} + 2z{x, z} = 2yz − 2zy = 0, etc.

This means that r2 is a Casimir function, i.e. it Poisson-commutes
with all functions H(x, y, z):

{H, r2} =
∂H

∂x
{x, r2}+ ∂H

∂y
{y, r2}+ ∂H

∂z
{z, r2} = 0.

Note that in our previous situation of the (p, q)-phase space, only
constants had this property.
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The consequence is that for any Hamilton function H the trajec-
tories, found from the equations

ẋ = {H,x}, ẏ = {H, y}, ż = {H, z}

will lie on the spheres x2 + y2 + z2 = const, i.e. r2 is a universal
conservation law. Thus, each sphere is a legitimate phase space of
Hamiltonian mechanics.

To reconcile the discussion with what we have said earlier, con-
sider the Hamilton function H = z. Then the equations of motion
are

ẋ := {z, x} = y, ẏ := {z, y} = −x, ż := {z, z} = 0.

The first two equations describe on the (x, y)-plane clockwise rota-
tions with constant angular velocity and period 2π (the same as in
the case of the harmonic oscillator with the hamiltonian (x2+y2)/2),
and the third one shows that z is conserved. Thus, the whole dy-
namics is described as the rotation about the z-axis, on each sphere
r2 = const and in space as the whole.

Taking any linear function αx+βy+γz on the role of the hamil-
tonian, we will obtain rotation in space with the angular velocity
vector (α, β, γ). A fancy way to formulate this result is by saying
that the space of linear functions equipped with this Poisson bracket
(i.e. with the cross-product operation) forms the Lie algebra of the
Lie group SO3 of Euclidean rotations in R

3.

Groups. This is not the last time we mention groups, and so it
might be useful to say a few informal words about this notion.

The official definition is that a group is a set G equipped with an
associative operation, the unit element, and the operation of inver-
sion of all of its elements.

For example, all n! permutations of the set {1, 2, . . . , n} of n
integers form the permutation group Sn with respect to the operation
of composition of permutations.

It is probably harder to imagine all permutations of an infinite
set X. By definition, they are arbitrary invertible mappings from X
to itself. Such mappings can be composed and inverted, and thus
form a group, with the identity mapping playing the role of the unit
element.

The group SO3 of rotations of the Euclidean 3-space is a subgroup
of the group of such permutations on the set X = R

3. Namely,
it consists of all those permutations of points in R

3 which preserve
several structures there: the structure of a linear space, the Euclidean
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dot-product, and the orientation (i.e. don’t transform left gloves into
right ones).

In fact this example just illustrates the universal way how groups
arise. Whenever we have a set X equipped with some structure,
all symmetries of the structure, i.e. all permutations on X which
preserve this structure, form a group with respect to the operation
of composition of mappings.

Indeed: composition of mappings is always associative; the iden-
tity mapping preserves whatever structure on X you have in mind;
when a permutation preserves a structure, its inverse also preserves
it; when each of two mappings preserves a structure, their composi-
tion also preserves it.

For example, even if we are not sure what a symplectic structure
on the phase space of a Hamiltonian mechanical system is, we can
be absolutely sure that symmetries of this structure form a group.
It is called the group of symplectomorphisms of the phase space.

One of the claims we made earlier can be rephrased by saying that
the transformations defined by solutions of Hamiltonian mechanical
systems are symplectomorphisms. (In fact the converse is true locally
on the phase space.)

The last example looks rather fancy. The groups we will really
encounter in this book are: Sn, SO3 and several of its close relatives,
as well as one-parametric groups t 7→ U(t) of linear transformations
in real and complex vector spaces (finite or infinite dimensional).
Here “one-parametric” means that the transformations U(t) are ex-
ponential functions of real numbers t ∈ R: U(t1 + t2) = U(t1)U(t2).

Most importantly, whatever a group G one ever encounters in
“real life”, the operation in the group is always the composition of
mapping, and the group usually consists of all symmetries of a certain
interesting structure.

The Hamilton-Jacobi equation. Let us return now from the
skies to the ground and explain, as we have promised, in what way
the wave–particle reciprocity we have seen in geometrical optics can
be extended to general classical mechanical systems.

To an arbitrary Hamilton functionH(p, q), one can associate a 1st
order partial differential equation, called Hamilton-Jacobi equation
which generalizes that of eikonal:

H(∇qS, q) = const, or H

(

∂S

∂q1
, . . . ,

∂S

∂qn
, q1, . . . , qn

)

= const,
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where S = S(q) is the unknown function on the configuration space.

Here is how the method of characteristics is generalized. Suppose
that a function S satisfies the Hamilton-Jacobi equation, that is,
the partial derivatives pi = ∂S/∂qi satisfy the algebraic equation
H(p(q), q) = const. Differentiating in qi and applying the chain rule,
we find:

0 =
∂H

∂qi
+

n
∑

j=1

∂H

∂pj

∂2S

∂qj∂qi
=

d

dt

(

−pi +
∂S

∂qi

)

.

The second equality is obtained by using the Hamilton equations
∂H/∂qi = −ṗi, ∂H/∂pj = q̇j for the trajectories of the Hamilton sys-
tem in the phase space, and the chain rule again. This result means
that the trajectories are everywhere tangent to the n-dimensional
surface given by the n equations ∂S/∂qi − pi = 0. Therefore they lie
inside this surface (Figure 7).

H(p,q)=const

p=    S

Figure 7: A solution to the Hamilton-Jacobi equation

This gives a transparent geometric interpretation to Hamilton-
Jacobi equations and their solutions. The equation expresses the fact
that in the phase space, the n-dimensional graph of the gradient map
p = ∇qS (in symplectic geometry, such graphs are called Lagrangian
submanifolds of the phase space) lies inside the level set of the Hamil-
ton function. Our computation shows that such a Lagrangian sub-
manifold represents an n− 1-parametric pencil of trajectories of the
Hamiltonian mechanical system on a fixed level H = const of the
total energy. The function S is analogous to the optical distance
function of geometrical optics, its level sets are analogous to the wave
fronts, while the trajectories of the Hamiltonian system comprising
the graph of ∇S are analogous to the rays, the main difference here
being that the mechanical system can be arbitrary.
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3 Short-wave optics

Newton’s rings. While the idea that light is propagated by rays
appears self-obvious, the wave nature of light seems harder to stom-
ach. To see why, let us examine one bit of empirical evidence for it
known as Newton’s rings.

The phenomenon is schematically illustrated by Figure 8: A
round lens is placed on top of a glass illuminated from below by
monochromatic light, and is observed from above. The through-
beam (shown in blue) is superimposed with the beam (green) re-
flected twice: from the surface of the lens, and then from the glass.
The distances traveled by the “blue” and “green” beams differ by
2a, which leads to the phase shift between the beams equal to 2a/λ
mod 2π, where λ is the wavelength. When the shift is close to 0, the
beams reinforce each other’s intensity, and when it is close to π, they
cancel. From geometry, 2a approximately equals d2/R, where R is
the curvature radius of the lens, and d is the shown distance of the
reflection points from the optical axis. As the distance d changes, so
does a, resulting in consecutive alternation between bright and dark
rings around the axis. Namely, the radius dk of the kth bright ring
can be found from d2/R = 2πk as dk =

√
2πkRλ, with the spacings

dk+1 − dk between the rings getting smaller with k.

k= 1  2 3 4 5 6

R

a

d

Figure 8: Newton’s rings

That’s the theory; now let’s get down to numbers. The wave-
length λ of visible light ranges between 390 and 700 nanometers
(nm). For a lens of curvature radius R = 10 cm, the radius d1 of the
central ring will be about 0.5mm. Thus, the rings should better be
observed under a microscope.
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The same applies to other manifestations of the wave properties
of light, such as e.g. diffraction i.e. the ability of waves to reach the
region shadowed from the straight rays by an obstacle. As long as
the wavelength λ remains small compared to the size of the objects,
the wave effects remain hardly noticeable.

Oscillating integrals. We now revisit the geometrical optics
setup with the aim of assessing the phenomenon of interference of
light waves, remaining however within the assumption that the wave-
length is small, or equivalently, the sizes of objects big relative to λ.

Suppose that a point-like source of monochromatic light of an-
gular frequency ω, positioned at a point x, radiates a spherical wave
of wavelength λ. When it reaches an observer positioned at q, it
creates the oscillation which in complex notation can be described
by the formula

A(x)

|x− q|e
i(ωt−2π|x−q|/λ).

Here the phase shift |x− q|/λ measures the optical distance between
x and q, the amplitude A(x) is proportional to the intensity of the
source, while the denominator |x− q| reflects the decay of the ampli-
tude with distance. (Namely, the energy of the wave, proportional
to the square of the amplitude, is distributed over the surface of the
sphere proportional to the square of the radius |x− q|.)

Heeding Huygens’ principle, we assume that each point x of the
wave front at the moment t = 0 radiates such a spherical wave of pos-
sibly variable amplitude density A(x)dx, distributed somehow over
the initial front. Superimposing all the spherical waves arriving at
the point q from all points x of the initial front, and dropping the
time factor eiωt common to all of them (as the initial source generat-
ing the current wave front could be considered monochromatic), we
obtain the following general expression for the wave field, called an
oscillating integral:

I(q) =

∫

a(x, q) e2πif(x,q)/λ dx.

Here the phase function f(x, q) combines the optical distance from x
to q with the optical distance from the initial source of light to the
point x on the wave front at t = 0, while the amplitude factor a(x, q)
combines, in a single function of x depending on q as a parameter,
the amplitude density on the front with the distance-caused decay.
The whole integral represents the amplitude of the wave field at a
point q.
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Fresnel’s integrals. Our current goal is to understand the be-
havior of an oscillating integral when λ is small.

One expects that the main contributions to the wave field at q
come from critical points of the phase function f(x, q) as a function of
x, i.e. xcr such that ∂f(xcr, q)/∂x = 0. An heuristic explanation of
this is that as the amplitude a varies slowly, i.e. remains practically
constant at the wavelength scale: a(x, q) ≈ a(x + λ, q), and the
phase function near a non-critical point varies at this scale roughly
speaking linearly, the spherical wave issued from a point x would
practically cancel with the wave coming from a nearby point where
∆f = λ/2. To see why this explanation doesn’t apply near a critical
point, let us examine the following example, where the phase function
is quadratic:

∫ ∞

−∞
e2πix

2/λdx =

√

λ

2π

∫ ∞

−∞
eiy

2

dy.

On Figure 9, the real part of the integrand is shown (and the reader
is recommended to sketch the imaginary part sin y2). We see that
for large y, cos y2 begins to oscillate between −1 and 1 faster and
faster, and it seems plausible indeed that the areas below and above
the horizontal axis will almost cancel each other. However, near the
critical point y = 0 there is an interval above the axis which seems
to have no partner to cancel with.

y

2cos y

Figure 9: Fresnel’s integral

By the way, this integral has to be manipulated with care, since
when the integrand is replaced with its absolute value, the integral
diverges to infinity. One way to find out what it is equal to would
be to slightly perturb the integrand so that it would behave similar
to the Gaussian distribution (assuming that ǫ > 0:

∫ ∞

−∞
e(i−ǫ)y2dy =

√

π

ǫ− i
.
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When ǫ→ 0, the limit value (1 + i)
√

π/2 gives the correct result:

lim
α→+∞

∫ α

−α
cos y2 dy =

√

π

2
= lim

α→+∞

∫ α

−α
sin y2 dy.

Short-wave asymptotics. The above heuristic expectations
find their affirmation in the following mathematically rigorous state-
ments about the asymptotical behavior of oscillating integrals as the
wavelengths λ→ 0. We will see that:

(a) an oscillating integral tends to 0 as λ→ 0,

(b) it tends to 0 faster than any power of λ as long as the region of
integration does not contain critical points xcr of the phase function
f(·, q), and

(c) each non-degenerate critical point xcr of the phase function

contributes to the wave field a summand of the order λd/2, polynomial
in λ, where d is the number of the variables of integration (i.e. the
dimension of the wave front).

These statements form the short-wave improvement of our obser-
vation in geometrical optics that the only relevant routes from x to
q are those perpendicular to the initial wave front.

In order to keep notations simple, we (assuming q fixed) examine
the model case of an oscillating integral in one variable:

∫ b

a
A(x) e2πif(x)/λ dx.

Suppose that the amplitude A is an infinitely differentiable function
vanishing outside the interval [a, b] of integration.

When the phase function f does not have critical points on [a, b],
and hence is monotone, it can be taken for a new coordinate y on
this interval. Then the integral can be rewritten as

Iλ =

∫ β

α
B(y) eiy/λ dy,

where B(y)dy = A(x(y))dx(y) vanishes outside [α, β]. Integrating
by parts, and taking into account that B,B′, B′′, . . . vanish at y =
α, β,we find

∫ β

α
B(y)eiy/λdy = iλ

∫ β

α
B′(y)eiy/λdy = (iλ)2

∫ β

α
B′′(y)eiy/λdy,
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and so on. That is, Iλ = o(λn) where positive integer n can be made
as large as one wishes.

Suppose now that the phase function in the oscillating integral
has a non-degenerate critical point at x = 0, and no other critical
points on the interval [−a, a]. We expand f at the critical point as
α+βx2+γx3+ · · · , where α = f(0), β = f ′′(0)/2, γ = f ′′′(0)/6, etc.,
and the amplitude also expands as A + Bx + · · · . In the following
computation, familiar to all physicists, we first make the change x =
λ1/2y. Then the range of integration expands from [−a, a] for x into

[−aλ−1/2, aλ−1/2] for y, and tends to (−∞,∞) as λ approaches 0.
Next, we rearrange the integrand in such a way that the structure
of the integral as a power series in λ becomes apparent (but for
simplicity of notation we retain only the principal terms):

∫ a

−a
A(x)e2πif(x)/λdx =

∫ a

−a
(A+Bx+ · · · ) ei(α+βx2+γx3+··· )/λdx

=λ1/2eiα/λ
∫ a/λ1/2

−a/λ1/2

(A+Bλ1/2y + · · · ) ei(βy2+γy3λ1/2+··· )dy

=λ1/2eiα/λ
∫ ∞

−∞
eiβy

2

[A+O(λ1/2)] dy

=(iλ)1/2
e2πif(0)/λ
√

f ′′(0)
[A+O(λ)] .

In the λ1/2-series expansion, the terms with the half-integer powers
of λ integrate to 0 due to parity considerations. Note that the factor
e2πif(0)/λ has absolute value 1, so that the whole expression behaves
as O(λ1/2).

This computation is easily adapted to the case of integrals and
non-degenerate critical points of phase functions in d > 1 variables.
Near such a point the phase function can be transformed by a linear
change of variables to α + β1y

2
1 + · · · + βdy

2
d + o(|y|2) so that the

integral can be factored into d one-dimensional ones, which results
in the asymptotics Iλ = λd/2[A+O(λ)] as promised.

Note that near a simplest degenerate critical point, where f(x) =
f(0) + f ′′′(0)x3/6 + · · · , a similar one-variable computation begins

with the change dx = dyλ1/3, and respectively ends with Iλ =
λ1/3[A + O(λ)]. This describes the asymptotical behavior of the
wave field near a typical point of the caustic, and justifies its name.
Indeed, λ1/3 tends to 0 infinitely slower than λ1/2.
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The wave equation. It would be an enthralling enterprise to
derive a combinatorial formula (the so-called Wick’s theorem) for the
coefficients ck of the entire asymptotical expansion for the oscillating
integral near a non-degenerate critical point of the phase function,
which can be written in the form

Iλ(q) = (iλ)d/2e2πi(f
′′(xcr(q))/λ+c0(q)+c1(q)λ+c2(q)λ2+··· ).

We will do this in the last section, but our current goal of collecting
the necessary clues before sinking into quantum mechanics is more
modest. So, we would like to make our last enlightening observation.

It is reasonable to argue that as a function of time t and an
observer’s position q, the asymptotical expansion u(t, q) = eiωtIλ(q)
of the wave field should satisfy the same equation as the field itself,
namely the wave equation:

1

c2
∂2u

∂t2
= ∆u, where ∆ :=

∂2

∂q21
+

∂2

∂q22
+

∂2

∂q23

is the Laplace operator.

The actual story behind this equation is quite interesting. When
James Clerk Maxwell formulated his theory of electromagnetism,
he derived the wave equation as its consequence, and found that
it indeed has wave-like solutions, e.g. the harmonic running waves
u(t, q) = eiωt+ik·q, where |k|2 = ω2/c2 = (2π/λ)2. Thereby Maxwell
discovered electromagnetic waves “at the tip of his pen”, and as the
coefficient c in his equation agreed with the experimental value of
the speed of light, one could say that he therefore established that
light consists of such waves. Apparently Maxwell himself downplayed
the last connection, and dismissed electromagnetic waves as a purely
mathematical artifact. However, among his students there was Hein-
rich Hertz, who later generated radio waves in a lab, thereby opening
the door into our age of telecommunication.

Returning to the short-wave asymptotics, take a function of the
form

u(t, q) = eiωte2πi(S(q)+O(λ))/λ,

and feed it to the wave equation. The time derivatives yield −ω2

c2 u,

which is the same as −4π2

λ2 u. The first spatial derivative yields

λ
∂

∂qk
e2πi(S+O(λ))/λ =

(

2πi
∂S

∂qk
+O(λ)

)

e2πi(S+O(λ))/λ.
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Applying λ∂/∂qk again, we would obtain two terms according to
the product rule. Note however — and this is our key observation!
— that the derivative of the first factor contributes only to O(λ),
and the derivative of the second factor brings down 2πi ∂S/∂qk once
again. Taking this into account, we obtain:

−4π2u = −4π2

[

(

∂S

∂q1

)2

+

(

∂S

∂q2

)2

+

(

∂S

∂q3

)2
]

u+O(λ).

Thus, the short-wave asymptotical expansion eiωtei(S(q)+O(λ))/λ of
the wave field, in order to satisfy the wave equation, must have the
phase term S — which is in fact the optical distance f(xcr(q)) along
a critical ray arriving to the observation point q — satisfying the
eikonal equation:

|∇S|2 = 1.

This mechanism of how the linear differential equation, such as the
wave equation, leads in the short-wave limit λ → 0 to a non-linear
1-st order differential equation which through the method of char-
acteristics is equivalent to a Hamilton equation (with the Hamilton
function H = p · p in this case) will prove to be most illuminating in
the forthcoming subject of quantization.
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4 The wizardry of quantization

Classical and quantum observables. In his 1924 PhD thesis,
Louis de Broglie suggested that matter, which was usually thought
of as consisting of particles, should exhibit wave-like properties at
the microscopic scale. In 1927, Clinton Davisson and Lester Ger-
mer confirmed this prediction in their electron diffraction experiment
by observing an interference pattern resulted from scattering elec-
trons on a crystal. This won de Broglie a Nobel Prize of 1929, and
marked the pinnacle (rather than the beginning) of the heroic era
in the history of quantum mechanics. We present now a physicist’s
new worldview which seems to be much more logical than that amaz-
ing succession of fantastic ideas and clever experiments that led to
the discovery of it during the first quarter of the 20th century.

The key aspect of the discovery is that, pretty much the same way
as electromagnetic waves in the short-wave limit λ ≈ 0 are perceived
as pencils of light rays, our macroscopic picture of matter as consist-
ing of moving particles is merely the limit of a certain wave field, an
illusion caused by the property of that field to have very short wave-
length by our macroscopic standards. The differences from optics,
however, are that the wave field propagates not through our physical
3-dimensional space, but lives on the configuration space (or even
the phase space) of a Hamiltonian system, reduces to pencils of its
classical trajectories when certain universal quantity ~ (instead of λ),
called the Planck constant, tends to 0, and prior to the limit, obeys
not the wave equation, but the so-called Schrödinger equation.

Before proceeding to the equation, let us briefly discuss the nature
of the Planck constant. It was Albert Einstein, who in his 1905 paper
on photoelectric effect suggested that the period τ = λ/c of oscilla-
tions of a light wave, and the energy E carried by this wave cannot
assume arbitrary independent values, but are related by quanization
condition

Eτ = 2π~n, n = 1, 2, 3, . . .

The proposal was motivated by the success of the earlier work of Max
Planck on the black-body radiation, but also by the ideas of relativity
theory Einstein was developing that same year. The physical dimen-
sion of the product is known as action, and thereby Einstein proposed
that light of a fixed wavelength or frequency comes in discrete chunks,
with the minimal value of action equal to some universal constant

2π~ ≈ 6.62607004 × 10−34kg m2/s.
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Another way to represent Einstein’s relation is by saying that pho-
ton’s energy, angular frequency ω, and wavelength λ satisfy

E = ~ω or Eλ = 2π~c, c ≈ 3× 108m/s.

Since the photon moves with the lightspeed, c (which is another uni-
versal constant), it is a relativistic particle, and the reasons why the
energy and the wavelength of a photon must be so related should be
understood in the context of relativity theory. We postpone an in-
troduction into this subject till a later section, as we will mostly deal
with non-relativistic quantum mechanics. But the Planck constant
(which is indeed very small on our macroscopic scale) will persist as
the discrete unit of action.

In order to understand where the Schrödinger equation comes
from, let us examine the nature of various physical quantities — the
observables — using the notation of Hamiltonian mechanics. Among
such observables, there are: the coordinates qk on the configuration
space (they determine the positions of the constituents of the me-
chanical system); the components pk of the momenta (possibly gen-
eralized ones); the potential energy V (q) of the mechanical system;
the kinetic energy (often in the form

∑

k p
2
k/mk); the components

qkpl − qlpk of the angular momentum vector q × p (in the case of a
particle in the 3-space, when k, l = 1, 2, 3); the total energy H(p, q).
In other words, physical quantities are represented by functions on
the phase space of the Hamiltonian mechanical system. Any such
functions are classical observables.

Imagine now that we have a “wave field”, defined on the config-
uration space (and traditionally denoted in quantum mechanics by
the Greek Ψ, the notorious “psi-function”), which is presented in the
form arising from the short-wave asymptotics:

Ψ(q) = ei(S(q)/~+c0(q)+c1(q)~+··· ).

The problem we encounter here is that of “reverse engineering”:
What kind of equation should Ψ satisfy which in the limit ~ → 0
would assure that the phase function S obeys the Hamilton-Jacobi
equation H(∇S, q) = const, i.e. H(p(q), q) = const where pk(q) =
∂S/∂qk?

From the example of the wave/eikonal equations, we know that
modulo terms of order O(~), each differentiation −i~∂/∂qk would
bring down the factor pk(q) = ∂S/∂qk in front of Ψ. Inspired
by this observation, we can continue and say that a component
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qkpl(q)−qlpk(q) of the angular momentum can be obtained by apply-
ing to Ψ the operator −i~qk∂/∂ql + i~ql∂/∂qk. Likewise, the equa-

tion H(p(q), q) = 0 will be satisfied whenever ĤΨ = 0 is a linear
differential equation assembled from differentiations −i~∂/∂qk and
multiplications by ql in such a way that it turns into the function
H(p, q) after replacing each differentiation with pk (and multiplica-
tion with ql). We can summarize these examples by saying that in
the wave mechanics, quantum observables are represented by (linear)
differential operators.

Time-dependent hamiltonians. In fundamental physics, we
usually assume that laws of Nature don’t change with time, and re-
spectively deal with time-independent Hamilton functions. However
it is possible to consider time-dependent systems, such as e.g. a pen-
dulum suspended on a chain of periodically varying length (in fact on
a swing, you yourself become such a pendulum by periodically rais-
ing and lowering your center of gravity). Such mechanical systems
can be described by time-dependent Hamilton functions:

q̇k = ∂H(p, q, t)/∂pk, ṗk = −∂H(p, q, t)/∂qk, k = 1, . . . , n.

The energy conservation law in such a system may be broken:

d

dt
H(p(t), q(t), t) =

∂H

∂t
+

∑

k

∂H

∂pk
ṗk +

∑

k

∂H

∂qk
q̇k =

∂H

∂t
.

By the way this shows that the energy conservation law is due to the
“homogeneity of time”, i.e. time-independence (∂H/∂t = 0) of H.

There is a simple mathematical trick that reduces the study of
time-dependent systems to time-independent ones. Namely, one can
consider t as a new n+ 1-st configuration variable, τ , introduce the
corresponding momentum variable −E (the sign is traditional), and
define a new Hamilton function H(p, q, τ, E) := H(p, q, τ)−E on the
2n+2-dimensional phase space (called extended). The new Hamilton
equations will have the form:

τ̇ = −∂H
∂E

= 1, Ė =
∂H
∂τ

=
∂H

∂t
(p, q, τ),

while the equations for pk and qk remain unchanged. The total en-
ergy conservation law is now restored in the form dH/dt = 0. In
particular the 2n+1-dimensional surface in the extended phase space
given by the equation E = H(p, q, τ) (i.e. H = 0) consists of trajec-
tories which when projected to the pq-space by forgetting τ become
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the trajectories of the original (time-dependent) Hamiltonian system.
The Hamilton-Jacobi equation H = 0 of the extended Hamiltonian
system assumes the form

−∂S/∂t = H(∂S/∂q1, . . . , ∂S/∂qn, q1, . . . , qn, t).

But even when the original hamiltonian is time-independent, this
approach encompasses in one go the solutions to the Hamilton-Jacobi
equation H(∇S, q) = E for all values of the “energy level” E.

Schrödinger equations. We are ready now to formulate and
appreciate the Hamiltonian counterpart of the wave equation:

i~
∂Ψ(q, t)

∂t
= Ĥ

(

~

i

∂

∂q1
, · · · , ~

i

∂

∂qn
, q1, . . . , qn

)

Ψ(q, t).

Note that the operator i~∂/∂t in our description of quantum observ-
ables represents the classical observable E. The Hamilton operator

Ĥ on the right is built of the multiplications by qk and differentia-
tions −i~∂/∂qk representing the classical observables qk and pk re-
spectively. The hamiltonian here is assumed time-independent. Yet
the “wave field” Ψ is a complex-valued function on the configuration
space extended by the time variable t. Here is an example which
for a long time will be sufficient for us: the Schrödinger equation
corresponding to a particle of mass m moving on a line in the force
field with the potential energy V :

i~
∂Ψ(q, t)

∂t
= − ~

2

2m

∂2Ψ(q, t)

∂q2
+ V (q)Ψ(q, t).

This example, where the operator Ĥ reproduces the Hamilton func-
tion p2/2m + V (q) quite literally, conceals the following important
feature of the quantum formalism: While pk and qk commute, the
corresponding operators (with the same k) don’t:

~

i

∂

∂qk
qkΨ(q) =

~

i
Ψ(q) + qk

~

i

∂

∂qk
Ψ(q).

In other words, denoting by p̂k and q̂k the operators correspond-
ing to the classical observables pk and qk, we arrive at Heisenberg’s
commutation relations

p̂kq̂k − q̂kp̂k =
~

i
.
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Note that the discrepancy on the right is O(~). This leads to the
conclusion, that in the limit ~ → 0 (called the quasi-classical limit)

a quantum Hamilton operator Ĥ turns into a well-defined classical
Hamilton function of p and q. Yet the reverse procedure, called quan-

tization, of reconstructing the operator Ĥ from the classical hamil-
tonian H is ambiguous. There are many operators Ĥ (e.g. those
which differ by an ordering of the letters p̂k and q̂k), which at ~ = 0
become the same H.

This ambiguity explains why we call quantization wizardry.
Strictly speaking, one cannot “derive” the Schrödinger equation of a
quantum system from its classical description, but must apply some
guess work, perhaps aided by some symmetry considerations, and
eventually backed up by a real-world experiment.

Determinism vs. randomness. The last remark brings up
the question: What does the Ψ-function actually represent?

Speaking abstractly, at a fixed t, Ψ(·, t) represents a quantum
state of the system, and the Schrödinger equation controls the change
of this state over time. The situation is fundamentally the same as
in classical mechanics, where one can say that the Hamilton-Jacobi
equation −∂S/∂t = H(∇S, q) determines the evolution of the clas-
sical state S(·, t). Both equations are deterministic: In a closed me-
chanical system, classical or quantum, the future and the past are
uniquely determined (by the Hamilton-Jacobi or Schrödinger equa-
tions respectively) if the current state of the system is known.

In fact this is a big “if”. How can a current state be known
(measured), when the system is closed, i.e. banned from interacting
with the rest of the Universe?

In classical mechanics, this issue is addressed by making the mea-
surement non-invasive. Plainly put, in order to locate the Moon in
the skies, one needs to exchange some photons with it, but this in-
teraction disturbs the Moon’s trajectory so little, that one can safely
assume that the observed system remained closed.

In quantum mechanics, intended to be applied to microscopic ob-
jects, the situation is different. As we will later see, it is impossible
to measure the state of a quantum system without altering the state.
Any measurement is invasive, disruptive of the deterministic evolu-
tion of the quantum state prescribed by the Schrödinger equation.

Yet, what is an act of measuring? Here we encounter the most
paradoxical aspect of quantum theory. In fact the interpretation of
the Ψ-function which makes it accessible experimentally is that the
square of the absolute value |Ψ(q)|2 of the complex-valued function
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describes the probability density of finding the system in the config-
uration q.

What is probability? Well, it is the frequency of certain events in
the limit when the number of trials tends to infinity. What kind of
events? Here is an example: Hitachi’s double-slit experiment. There
a “cannon” shoots electrons one-at-a-time toward a detector through
a region with strong magnetic field forcing them to “choose” between
two routes. After 30 minutes of shooting, the bright spots on a
computer’s screen showing the detected electrons accumulate into a
series of bright and dim fringes. One could interpret the result by
saying that each electron, interacting with the detector, produced
a bright spot, whose location is distributed randomly according to
the interference pattern described by the function |Ψ(q)|2. What is
probably most striking here, is that an experimental observation of
fundamental quantum behavior of a microscopic conservative system
involves a classical macroscopic detector, time-irreversible medium
(such as youtube), and eventually us in the role of the observers.

We began our discussion of geometrical optics with the dilemma
whether light consists of waves or particles, and based on Huygens’
principle answered “both”. Returning to this question in the context
of quantum mechanics, we should answer “neither”. The Universe
was not designed to cater to the intuition of cavemen dropping peb-
bles into water and watching the circles spread. The reality is better
captured by such a mathematical abstraction as complex numbers
Ψ(q). The relative probabilities of detecting a “pebble” are encoded
by their magnitudes, but due to their phases, adding complex num-
bers may result in the magnitude’s decrease, resembling the interfer-
ence between superimposed waves.
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14 Several experiments and one history

Black body radiation. Thanks to Thomas Kuhn’s 1962 book The
structures of scientific revolutions, science historians realized that the
image of a steadily growing bank of scientific ideas is at odds with
reality. The latter is better described by Hegel’s dialectical double
negation: the succession of crisis-caused revolutions (paradigm shifts
in Kuhn’s terminology), each fruitful, but progressing inevitably into
a new crisis, and so on, and so on. The paradox with Zeno’s arrow,
resolved by Newton’s introduction of instantaneous positions and
velocities, yet reinstated by Heisenberg’s uncertainly principle is a
good illustration. Another is the transition from classical to quantum
mechanics, and then to the “second quantization” and quantum field
theory.

One implication is that the ways how the classical discoveries are
usually fitted into the worldview after a paradigm shift may have lit-
tle to do with the actual motivation of the discoverers, who operated
within the outdated paradigm. The discovery of quantum mechan-
ics is in no way an exception, and the stories about its emergence
as they are represented in the textbooks reflect not so much the real
history of the subject but rather mythology circulating in the physics
community.

In this sense, the present brief outline of the key events and ideas
which governed the emergence of quantum mechanics should also
not be confused with the genuine history of it. Our main intention
here is to make some sense, and hopefully in straightforward ways,
of a few basic steps, such as Planck’s theory of black body radiation,
Einstein’s work on the photoelectric effect, and a few others which led
to the concept of “quanta”. As it was discovered by no one else but
Kuhn himself, the real trajectory of the ideas was not straightforward
at all, and for the actual history we refer the reader to his 1978 book
Black-body theory and the quantum discontinuity, 1894-1912.

The term black body radiation is perhaps confusing. The problem
was posed around 1860 by Gustav Kirchhoff. He studied radiation
emitted from a body, and argued that by subtracting the light re-
flected by the body’s surface, one ends up with the purely thermal
radiation whose properties should not depend on the material or the
surface, but only on the wavelength and the temperature. Such radi-
ation in the form of thermal oscillations of the electromagnetic field
exists inside any closed space (“cavity”), and becomes observable
when it is allowed to escape through a small hole in the cavity’s wall.
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At this point one is usually advised to take a day-time look at
a neighbor’s window — to find out that it looks dark. Daylight
rays entering the room through the window, before finding their way
out, make enough reflections inside the cavity to blend with the inner
radiation to thermal equilibrium. At room temperatures, the thermal
radiation has infrared spectrum, invisible to our eye. That’s why the
window looks dark, and the radiation called “black-body”.

The classical approach to problem of understanding thermal oscil-
lations, posed by Kirchhoff, leads to a contradiction known as ultra-
violet catastrophe. It predicts that the thermal energy accumulated
in a cavity is infinite due to infinitely many modes of oscillation of
shorter and shorter wavelengths, each allocated by the thermostat
the same average energy.

In more detail, oscillations of the electromagnetic waves inside
a cavity (you may think of a rectangular box, but any other shape
would do just as well) is the superposition of standing waves — the
eigenfunctions of time-independent Maxwell’s equations with appro-
priate boundary conditions at the walls of the cavity. There are
infinitely many such eigenfunctions. For example, taking a cube of
size L and imposing (for simplicity) periodic boundary conditions,
we get a two-dimensional space of eigenfunctions

(E,B) = (E0, B0)e
2πi(k·q/L−νt), ν =

c|k|
L
, E0 ·k = 0, B0 =

k

|k| ×E0,

for every integer wave vector k. Each eigenfunction is a degree of
freedom of the field, and can be considered as a classical harmonic
oscillator. In thermal equilibrium with the thermostat, such an os-
cillator is allocated the same average energy, kT . For large ν, the
number of integer vectors k inside the ball of radius νL/c (as in the
free-electron model) approaches the volume of the ball. Therefore
the distribution of energy over frequencies should be given by the
density (known as Rayleigh-Jeans law)

kT × 2× 4πL3

3c3
dν3 = kT

8πV

c3
ν2 dν.

Here V = L3 is the volume of the cube, and the factor 2 is the
dimension of the space of polarizations of the above harmonic wave.

Of course, this result, predicting the unlimited growth of energy,
at high frequencies disagrees with experiments, which show that the
radiated energy peaks at a finite frequency νmax.

148

https://en.wikipedia.org/wiki/Rayleigh-Jeans_law


ν T
(1)

(3)
T

ν

ν
dE

d

T
(2)

max

Figure 31: Wien’s displacement law

Moreover, in 1893, Wilhelm Wien argued from very basic ther-
modynamic principles that the whole distribution must scale propor-
tionately to the absolute temperature, and in particular, the peak
frequencies νmax are proportional to T .

In 1900, Max Planck conjectured that the energy of a harmonic
oscillator (“resonator”) takes values which are discrete multiples of
some unit, ǫ0. Then the average energy of the oscillator is given by

ǭ = − d

dβ
logZ = − d

dβ
log

∞
∑

n=0

e−βnǫ0 =
ǫ0

eǫ0/kT − 1
.

To have the consequences compliant with Wien’s displacement law,
the energy unit had to be universally proportional to the frequency:
ǫ0 = hν. This approach leads to the energy density

8πV ν2

c3
hν

ehν/kT − 1
dν = (kT )4

8πV

h3c3
X3

eX − 1
dX, where X :=

hν

kT
.

It agrees with experiments perfectly, as soon as the value of h com-
patible with the observed value of Wien’s universal constant νmax/T
is taken.

By the way, the formula implies that the total thermal energy is
proportional to T 4 (the so-called Stephan-Boltzmann law). To find
the proportionality coefficient a, we compute

∫ ∞

0

X3dX

eX − 1
=

∞
∑

n=1

∫ ∞

0
X3e−nXdX =

∞
∑

n=1

1

n4

∫ ∞

0
y3e−ydy = ζ(4)3!
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In fact one (non-trivial) job of Bernoulli numbers is to represent
some values of the Riemann zeta-function:

ζ(2n) = (−1)n+1B2n
(2π)2n

2(2n)!
.

For n = 2, we find ζ(4) = π4/15 ≈ 1.0823 . . . Therefore, per unit of
cavity’s volume

Total radiation energy =
8π5k4

15c3h3
T 4.

Photoelectric effect. Analyzing Planck’s hypothesis about the
discreteness of the energy levels of electromagnetic oscillations inside
a cavity, Einstein and independently Ehrenfest concluded that it has
far-reaching consequences as it cannot be easily explained within
classical physics. Planck himself had hoped that the phenomenon
can be a consequence of the way resonators (e.g. cavity’s walls) gen-
erate electromagnetic waves. More specifically, the discreteness of
electric charge, which as it had been recently discovered consisted of
electrons, was a plausible cause. Einstein went further, and conjec-
tured in his work on the photoelectric effect that light per se consists
of discrete “bundles of energy” ∆E universally proportional to the
frequency: ∆E = hν (or ~ω is our notation throughout the book,
where ω = 2πν is angular frequency, and h = 2π~ is the constant
introduced by Planck).

The photoelectric phenomenon consists in ejecting electrons from
a metal by a beam of light. Applying voltage, one engages the ejected
electrons into a current that can be measured by a galvanometer. If
the reverse voltage is applied, only the electrons with kinetic energy,
sufficient to overcome the voltage barrier, will be able to participate
in the current. Thus, the maximal kinetic energy of emitted electrons
can be measured as the value of stopping potential: the size of the
barrier which reduces the photocurrent to 0.

From the classical point of view, the stopping potential should
depend on the intensity of light. From Einstein’s point of view,
an electron in the metal can absorb from the beam one “bundle of
energy” hν. In the case hν exceeds the energy W tying the electron
to the metal, the electron is left with the kinetic energy K = hν −
W . We have encountered W under the name work function in our
discussion of conduction levels of metals (see Figure 25a). Thus, the
stopping potential depends on the light frequency linearly with the
slope h. The work function W = hν0, where ν0 is the frequency of
incident light below which the photoelectric effect ceases entirely.
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Note that “intensity of light” of a given frequency can be char-
acterized as the state of energy hν(n + 1

2 ) of an abstract harmonic
oscillator. However, this energy is interpreted in quantum mechan-
ics (or rather quantum theory of the electromagnetic field) as the
energy hν/2 of the vacuum state plus the energy of n indistinguish-
able photons, each carrying energy hν and absorbable by electrons
only as one photon at a time. By the way, Bose-Einstein’s statis-
tics of these photons coincides (not coincidentally though) with the
statistical sum Z = 1/(1 − e−hν/kT ) describing Planck’s resonator.

In experiments of 1914, Robert Millikan confirmed Einstein’s pre-
dictions, and also managed to accurately determine the value of the
Planck constant. In 1921, A. Einstein was awarded a Nobel Prize
in Physics, yet not for relativity theory (which some still considered
controversial), but “for his services to theoretical physics, and espe-
cially for his discovery of the law of the photoelectric effect.”

Compton’s scattering. Controversially or not, consider a rest-
ing electron of relativistic energy mc2 scattering a photon with the
momentum vector p and relativistic energy c|p|. The event results
in a scattered photon with the momentum p̃ and energy c|p̃|, and
a recoiled electron with the momentum vector pe = p − p̃ (by the
momentum conservation law) and relativistic energy E,

E2 = m2c4 + c2|pe|2, or |pe|2 =
(

E

c
−mc

)(

E

c
+mc

)

.

From the energy conservation law we have E − mc2 = c|p| − c|p̃|.
Together with the cosine theorem |pe|2 = |p|2 + |p̃|2 − 2|p||p̃| cos θ,
this yields:

|p|2 + |p̃|2 − 2|p||p̃| cos θ = |p|2 + |p̃|2 − 2|p||p̃|+ 2mc(|p| − |p̃|).

From here, using the quantum hypothesis of Planck and Einstein, one
obtains a relation between the wavelengths λ̃ and λ of the scattered
and incident photons, and the cosine of the scattering angle θ:

(1− cos θ) =
mc

|p̃| −
mc

|p| =
mc

2π~
(λ̃− λ).

The expression λ0 = 2π~/mc is called the Compton wavelength
corresponding to massm. A photon of this wavelength carries energy
~ω = 2π~c/λ0 = mc2 equal to the relativistic energy of the particle
of mass m at rest. For an electron, the Compton wavelength comes
out as λ0 = 0.0024 nm. The above computation predicts the shift

151

https://en.wikipedia.org/wiki/Robert_Andrews_Millikan


∆λ = λ0(1 − cos θ) between the wavelengths of the scattered and
incident beams, depending on the angle of scattering.

In 1923, Arthur Compton observed this effect by scattering X-
rays of wavelength 0.0709 nm (≈ 71 pm) on a graphite target (Fig-
ure 32). The wavelengths were measured using Bragg’s diffraction
of the scattered X-rays on a crystal. The intensities of radiation
accumulated at given wavelengths were determined using ionization
chambers.

lead box

74

71 75

71.571

pm

ionization

chamber

crystal

diffraction

pm

pm

pm

71

71
target

graphite

X−ray source

Figure 32: Compton’s scattering

The results show two peaks: at the wavelength λ and λ̃. Accord-
ing to the classical Thomson theory of scattering of electromagnetic
waves on electrons, the source waves of frequency ν would cause the
electrons to oscillate with the same frequency (rather then recoil)
and, working as vibrators, re-emit electromagnetic waves of the ini-
tial wavelength in all directions. This explains the left maxima on
the graphs. But the presence of the right maxima at a greater wave-
length cannot be explained without the quantum hypothesis stipu-
lating the rigid relationship λ|p| = 2π~ between a photon’s wave-
length λ and momentum |p| via the Planck constant. The recoiled
electrons were directly detected in subsequent experiments, making
Compton’s effect the turning point in convincing the skeptics (such
as e.g. Millikan) that light indeed consists of quanta.
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Electron diffraction. The method of measuring the wave-
lengths in Compton’s experiment demonstrating particle-like proper-
ties of photons was based, rather ironically, on their wave-like proper-
ties. In 1913, following Max von Laue’s 1912 discovery of diffraction
patterns resulting from scattering X-rays on a crystal, W. Lawrence
Bragg proposed a simple formula (the so-called Bragg’s condition)
predicting the directions of maximum intensity of the scattered beam.
He then tested the prediction in the experimental setting devised by
his father W. Henry Bragg.

φ

θ θ

d

Figure 33: Bragg’s condition

Namely, as it is clear from Figure 33, the difference in the optical
distance between the rays reflected at an angle θ from two consecutive
layers of atoms of a crystalline lattice with the distance d between
the layers is equal to 2d sin θ. The interference between the two
reflected beams of wavelength λ is to produce maximum intensity —
physicists say: is additive or constructive (as opposed to subtractive
or destructive, occurring when the beams cancel each other) — when
Bragg’s condition is met:

2d sin θ = nλ, where n is an integer.

In particular, X-rays of different wavelengths will experience con-
structive diffraction at different angles. This phenomenon of disper-
sion was used by Compton to measure the intensity of the scattered
beam as a function of wavelength (Figure 32). The diffraction crystal
disperses the beam into the ionization chamber at an angle θ varying
with the wavelength.

In 1924, Louis de Broglie conjectured that the relationship pλ =
2π~, postulated by Einstein for photons of momentum p and wave-
length λ in his theory of photoelectricity, should remain valid for
particles of matter, which therefore should possess the properties of
a wave of de Broglie wavelength λ = 2π~/p.
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In 1921-25, unaware of this conjecture, Clinton Davisson and
Lester Germer were conducting experiments (at what later became
Bell Labs) of shooting electrons at a nickel plate in vacuum. Inad-
vertently they created on the surface of the plate a mono-crystal of
nickel sufficient in size to produce a diffraction pattern in the scat-
tered electron beam.

In 1926, Davisson, attending a conference in Oxford, was sur-
prised by a talk of Max Born who used their early results on electron
diffraction as an evidence in favor of de Broglie’s conjecture. More
focused experiments ensued, resulting in good agreement between
the conjectural values of de Broglie wavelengths and the observed
values found on the basis of Bragg’s formula.

Namely, the thermally excited electrons were accelerated by static
voltage of 54V and scattered at the nickel mono-crystal, producing
the highest intensity of the reflected electron beam (see Figure 33) at
the angle φ = 50◦ with the incident beam. From Bragg’s condition
with n = 1, θ = 90◦ − φ/2, and d = 91 pm for nickel (found from
X-ray scattering), one computes λ = 165 pm. The theoretical value
of de Broglie wavelength 2π~/

√
2meE for electrons of kinetic energy

E = p2/2me = 54 eV is about 167 pm.

This success, together with the same experiment performed about
the same time and independently by George Thomson, son of the
electron’s discoverer John Thomson (1897), are considered the first
direct confirmations of the existence of “waves of matter”, generally
described by the Schrödinger and in the case of electron by the Dirac
equation.

Zeeman’s normal and anomalous effects. The conjecture
of de Broglie about the wave nature of matter didn’t come out
of the blue. In 1909, Ernest Rutherford, based on the so-called
gold foil experiments, demonstrating occasional strong deflections of
alpha-particles typically penetrating a metal foil without scattering,
concluded that matter consists of tiny positively charged nuclei sur-
rounded by a cloud of orbiting electrons.

The problem of instability of atoms arising from Rutherford’s
model (his orbiting charges would radiate electromagnetic waves and,
loosing energy, quickly fall to the nucleus) was addressed in 1913 by
Niels Bohr. He conjectured that the electrons would not emit pho-
tons when they orbit the nucleus along a circular orbit characterized
by a discrete value of sectorial velocity |L| = n~, n = 1, 2, . . . In the
classical Kepler problem, these assumptions lead to the formula for
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the electron’s energy levels in the hydrogen atom

En = − me4

(4πǫ0)22~2n2
.

Bohr’s model was improved by Arnold Sommerfeld who allowed el-
liptic Keplerian orbits possessing the same quantized values n~ of
their action. In the quantum Kepler problem, this corresponds to
introducing the orbital angular momentum quantum number l =
0, . . . , n− 1.

Bohr-Sommerfeld’s model of the hydrogen atom agrees with Ry-
dberg’s empirical formula for the hydrogen spectral series: λ−1 =
(En − Em)/2π~c = R(m−2 − n−2). These are the positions, albeit
approximate, on the scale of wavelengths λ, for the spectral lines
of light re-emitted by hydrogen. Moreover, by extending the model,
Sommerfeld managed to explain the Zeeman effect of splitting of each
spectral line into several close lines in the presence of a weak external
magnetic field.

To start with a bit of theory, denote by q the 3-dimensional
radius-vector of a particle of mass m and charge Q moving in a
potential V (q) in the presence of a magnetic field B, which for sim-
plicity we will assume constant. The Newton equation

mq̈ = Q(q̇ ×B)−∇V (q)

can be interpreted (check this!) as the Euler-Lagrange equation of
the following Lagrangian:

L(q, q̇) = m
q̇ · q̇
2

+Q(A(q) · q̇)− V (q),

where A = (B × q)/2 is the vector-potential of the magnetic field in
our special case of constant B. In general, it is defined, somewhat
ambiguously, as any vector field such that ∇ × A = B. It exists at
least locally due to the Maxwell equation ∇ · B = 0.

Let us compute the corresponding Hamiltonian. The generalized
momentum p := ∂L/∂q̇ = mq̇ + QA(q). From this, we express q̇ =
p−QA/m, and substitute into p · q̇ − L to find

H(p, q) =
1

2m
(p−QA) · (p−QA) + V (q).

Note that when the magnetic field is weak, the terms of order |A|2
can be neglected. The linear terms (for constant B) have the form

− Q

2m
p · (B × q) = − Q

2m
B · (q × p).
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Thus, in the limit of weak constant field B, the Hamiltonian can be
expressed as

H(p, q) ≈ p · p
2m

− Q

2m
B · L+ V (q), where L = q × p

is the angular momentum. This tells us how to quantize the hydrogen
atom problem in the presence of a weak magnetic field (say, directed

along the z-axis). The hamiltonian operator ĤK of the quantum
Kepler problem should be changed into

ĤZ := ĤK +
e|B|
2me

L̂z.

Here we took Q = −e to be the charge of an electron, and m = me

to be its mass.

Let us recall that the eigenspace of ĤK with the eigenvalue En

splits into the direct sum of irreducible SO3-representations Vl ac-
cording to the orbital angular momentum quantum number l =
0, 1, . . . , n−1. In each Vl, the operator ~

−1L̂z acts with integer eigen-
values ranging from −l to +l. The eigenvectors of L̂z form therefore
the basis of eigenstates of the modified hamiltonian operator ĤZ .
The eigenvalues are

En +
e|B|
2me

k~ = En + µB|B|k, where k = 0,±1, . . . ,±l,

and µB is a universal constant known as the Bohr magneton:

µB =
e~

2me
= 5.79× 10−5 eV/T(esla).

To put the numbers in context: the strength of a typical refrigerator
magnet is about 10−3 T, and for the hydrogen atom, E1 = −13.6 eV.

Within the semi-classical Bohr-Sommerfeld theory, the interpre-
tation of the terms µB|B|k was as follows. An electron orbiting the
nucleus effectively forms a tiny loop of electric current. It generates
therefore a magnetic field identical to that of a tiny magnet — mag-
netic dipole (Figure 34). The dipole is characterized by the magnetic
moment vector µ. In this case it is equal to µBL/~, where L is the
angular momentum vector of the orbiting electron. The dot-product
B · µ represents the energy of interaction between the external mag-
netic field and the dipole.
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Figure 34: Magnetic dipole

The splitting of the energy levels in the presence of an external
magnetic field explains the respective splitting of spectral lines, with
spacings proportional to the intensity of the applied magnetic field.
The phenomenon, somehow expected by Hendrik Lorentz, and first
observed in 1896 by Pieter Zeeman, is known as the normal Zeeman
effect.

The explanation suggests an odd number of lines arising from a
single spectral line in the absence of the magnetic field. The anoma-
lous Zeeman effect first reported in 1897 by Thomas Preston, shows,
in particular, that the number of lines can be even.

The effect is due to the spin phenomenon. Namely, for the elec-
tron, which is a particle with spin 1/2, the eigenspaces of ĤK have
the form Vl ⊗ V1/2 = Vl+1/2 ⊕ Vl−1/2. It turns out that the ex-
ternal magnetic field interacts with the electron through both its
orbital magnetic moment ~−1µB(L̂ ⊗ 1) and spin magnetic moment

2~−1µB(1⊗ Ŝ). The factor 2 in the latter case (added to fit spectro-
scopic data) was at first the source of doubts and controversy, but
turned out to be a relativistic effect. The accounting for the spin
magnetic moment shifts the expected energy levels and splits them
into “doublets”. This improves the agreement of the expected num-
bers and exact positions of the spectral lines with the experiment.
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The “anomalous” splitting of some spectral frequencies into pairs,
shifted by ±|B|µB/~ comparing to the positions, expected on the
basis of Bohr-Sommerfeld theory, played a role in the discovery of
spin by Samuel Goudsmit and George Uhlenbeck in 1925. Namely,
their bold idea was preceded by Goudsmit’s purely numerological
observation of how one could account for the anomalous Zeeman
effect by replacing some integers in Sommerfeld’s formulas with half-
integer values.

Stern-Gerlach’s experiment. Though this experiment, con-
ducted in 1922, is considered to be the most direct evidence of spin,
it played no role in its discovery. Otto Stern and Walter Gerlach
were trying to corroborate Bohr-Sommerfeld’s theory by sending a
beam of silver atoms through a strongly inhomogeneous magnetic
field (with the gradient of over 1T/cm) transversal to the beam.

Atoms of silver have 47 electrons, but 46 of them occupy states
with pairwise opposite spins. Thus, only the valence electron con-
tributes to the overall magnetic moment of the atom. It contributes
so only through its spin magnetic moment, since the orbital angular
momentum quantum number l of this electron turns out to be 0.

Of course, the whole atom is a boson, with the nucleus containing
47 protons each carrying the charge +e and spin 1/2. Note however,
that the formula for the magneton contains the massm of the particle
in the denominator. Since protons are much heavier than electrons,
their spin magnetic moment is much smaller than the magnetic mo-
ment of the valent electron. The latter is therefore largely responsible
for the magnetic properties of the whole atom.

Passing through a uniform magnetic field, the atom, thought of as
a classical magnetic dipole, would experience torque, but no overall
magnetic force (since it is also eclectically neutral). However, if the
field is inhomogeneous, the gradient of the magnetic force acting on
the dipole’s North and South poles could deflect the atom from the
straight trajectory.

From the point of view of classical physics, the deflected atoms
would create a continuous distribution on the screen with the max-
imum at the center due to the random orientations of the atom’s
magnetic moments. Stern and Gerlach incorrectly thought that the
valence electron of silver has the orbital angular momentum quantum
number l = 1. In this case the orbital magnetic moment would take
on three discrete values corresponding to k = 0, 1,−1. Respectively,
they expected the beam to split into three: one undeflected and two
deflected in opposite directions.
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Instead, they observed the beam split into two oppositely de-
flected ones (Figure 35).

S

N

oven

silver beam

expected observedinhomogeneous magnetic 

          field

Figure 35: Stern-Gerlach experiment

This result was at odds with Bohr-Sommerfeld’s theory, and was
only explained with the idea of spin. The two deflected beams of
atoms with zero orbital magnetic momentum (l = 0) differ by the
spin magnetic momentum (k = ±1/2), that is, to be more precise,
by the eigenvalue of one of the components of spin (say Sz).

The experiment can be iterated as follows. Separating the beam
with the value of Sz equal to, say, +~/2, one can send it through
inhomogeneous magnetic field again. If the magnetic field is oriented
the same way as before, then the beam does not split: all the atoms
deflect the same way as they have the same value of Sz. However,
when the magnetic field is oriented in, say, x-direction, the beam
splits again into two: with the value of Sx equal to +~/2 and −~/2.

This illustrates the nature of quantum measurements. The opera-
tors Sz an Sx do not commute. So, they cannot simultaneously attain
definite values. When the iterated experiment enforces the atoms to
“choose” between the two values of Sx, the initially enforced value
of Sz is “forgotten”.

From the abstract point of view, what happened in the act of
measuring is that the closed system, described by the determinis-
tic evolution of the psi-function in accordance with the Schrödinger
equation, fails to remain closed as a result of interaction with the
measuring device. The consequence of measuring (often described as
the “collapse of the wave function”) is that the vector in the Hilbert
space represented by the wave function is projected orthogonally to
the subspace spanned by the states, consistent with the outcome of
the measurement. In principle this is similar to how probabilities of
possible events “collapse” into conditional probabilities as a result
of the condition turning out certain. The difference is that the “col-
lapsed” ψ is the complex-valued amplitude, while the probabilities
are proportional to |ψ|2.
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Nobel laureates. Many of the aforementioned achievements
were awarded Nobel Prizes in Physics. Otto Stern received one, but
for the discovery of the magnetic moment of proton, and not for
Stern-Gerlach’s experiment. Ernest Rutherford made his contribu-
tion to our story only after receiving his Nobel Prize in Chemistry.
Here is our list of the (mostly) familiar laureates, in the chronological
order of their awards.

William Röntgen, 1901: for discovery of X-rays.

Hendrik Lorentz and Pieter Zeeman, 1902: for the Zeeman effect.

Wilhelm Wien, 1911: for Wien’s law of black-body radiation.

Max von Laue, 1914: for diffraction of X-rays on crystals.

W. Henry Bragg and W. Lawrence Bragg, 1915: for Bragg’s law.

Max Planck, 1918: for introducing quanta of energy.

Albert Einstein, 1921: for the theory of photoelectricity.

Niels Bohr, 1922: for his model of atom.

Robert Millikan, 1923: in part for the photoelectric effect.

Arthur Compton, 1927: for Compton’s effect.

Louis de Broglie, 1929: for “the discovery of the wave nature of
electrons.”

Werner Heisenberg, 1932: for “the creation of quantum mechanics.”

Erwin Schrödinger and Paul Dirac, 1933: for “the discovery of new
productive forms of atomic theory.”

Carl Anderson, 1936: for the discovery of positron.

Clinton Davisson and George Thomson, 1937: for the demonstration
of electron diffraction.

Enrico Fermi, 1938: in fact for his discovery of nuclear reactions.

Otto Stern, 1943: for discovering the magnetic moment of proton.

Wolfgang Pauli, 1945: for the exclusion principle.

Max Born, 1954: for the statistical interpretation of psi-functions.

Richard Feynman, Julian Schwinger, Shinishiro Tomonaga, 1965:
for Q.E.D.

Subrahmanyan Chandrasekhar, 1983: for the theory of white dwarfs.

Eric Cornell, Carl Wieman, Wolfgang Kettlerle, 2001: for demon-
strating Bose-Einstein condensation.
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