Spring 2015. Math 104. Sample problems

- 1. A (real or complex) number x is called *algebraic* if it is a root of a non-zero polynomial with integer coeficients, and *transcendental* otherwise. Prove that the set of algebraic numbers is countable, and derive that transcendental numbers exist.
- 2. Is there an uncountable closed subset of R which contains no rational numbers?
- **3.** Prove that every open subset in **R** is the union of at most countably many disjoint open intervals (finite or infinite).
- **4.** Prove that the function equal 0 for $x \le 0$ and equal $e^{-1/x}$ for x > 0 is infinitely differentiable at x = 0 and has all Taylor coefficients equal to 0.
- **5.** Let $f: \mathbf{R} \to \mathbf{R}$ be a differentiable function such that |f'(x)| < 0.99 for all $x \in \mathbf{R}$. Prove that f has exactly one fixed point x_0 (i.e. solution to $f(x_0) = x_0$), and that every sequence (x_n) defined by an arbitrary choice of x_1 and by the recursion relation $x_{n+1} = f(x_n)$ for all $n = 1, 2, 3, \ldots$, converges to x_0 .
- **6.** Give an example of a differentiable function $f : \mathbf{R} \to \mathbf{R}$ without fixed points, and such that |f'(x)| < 1 for all $x \in \mathbf{R}$.
- 7. Prove that the sequence defined by the recursion relation $x_{n+1} = (x_n + ax_n^{-1})/2$, where a is a given positive number, and x_1 any positive number, converges to \sqrt{a} . (Try this algorithm of computing \sqrt{a} on a calculator to see how quickly it converges. Can you explain the high convergence rate?)

1

- **8.** Prove that sequence $s_n := 1 + 1/2 + 1/3 + \cdots + 1/n \log n$ converges to a limit C between 0 and 1 (called *Euler's constant*).
- **9.** Prove that a continuous function $f: \mathbf{R} \to \mathbf{R}$ mapping open sets into open sets is monotone.
- **10.** Prove that every continuous mapping $f:[0,1] \to [0,1]$ has a fixed point (i.e. a solution to f(x) = x).
- **11.** Prove that function $f : \mathbf{R} \to \mathbf{R}$ is continuous if and only its graph, $graph(f) := \{(x,y) \in \mathbf{R}^2 \mid y = f(x)\}$, is a closed subset in \mathbf{R}^2 .
- **12.** Suppose that a real function defined on **R** satisfies $\lim_{h\to 0} (f(x+h) f(x-h)) = 0$ for every $x \in \mathbf{R}$. Does it imply that f is continuous?
- 13. Prove that a real-valued function defined on a dense subset $X \subset [0,1]$ extends to a continuous function on [0,1] if and only if it is uniformly continuous on X.
- **14.** Suppose $c_0 + c_1/2 + +c_2/3 + \cdots + c_n/(n+1) = 0$, where c_0, \ldots, c_n are real numbers. Prove that polynomial $c_0 + c_1 x + c_2 x^2 + \cdots + c_n x^n$ has a real root between 0 and 1.
- **15.** Let p and q be positive numbers such that 1/p+1/q = 1. Prove Young's inequality: for all $u, v \geq 0$, we have $uv \leq u^p/p + v^q/q$, where the equality holds if and only if $u^p = v^q$.
- **16.** Let f, g be nonnegative functions Riemann-integrable on [a, b], and such that $\int_a^b f^p dx = 1 = \int_a^b g^q dx$ (1/p + 1/q = 1). Show, using the previous problem, that $\int_a^b f g dx \leq 1$, and derive $H\ddot{o}lder$'s inequality: if $f, g \in \mathcal{R}[a, b]$, then

$$\left| \int_a^b fg dx \right| \le \left(\int_a^b |f|^p dx \right)^{1/p} \left(\int_a^b |g|^q dx \right)^{1/q},$$

where p, q > 0 satisy 1/p + 1/q = 1. (The special case p = q = 2 is called Cauchy-Schwarz's inequality).

- **17.** Suppose a continuous function $f:[0,1] \to \mathbf{R}$ satisfies $\int_0^1 f(x)x^n dx = 0$ for all $n = 0, 1, 2, \ldots$ Prove that f(x) = 0 on [0,1].
- **18.** Let (f_n) be a uniformly bounded sequence of functions Riemann-integrable on [a, b]. Prove that the sequence $F_n(x) := \int_a^x f_n(t)dt$ of functions of $x \in [a, b]$ contains a uniformly convergent subsequence.
- 19. Prove that a nested sequenc of non-empty compact sets has non-empty intersection.
- **20.** Prove that the intersection of countably many open dense subsets is dense. (This is called the *Baire category theorem*.)
- **21.** Prove that $\lim_{n\to\infty} (1+1/n)^n$ exists and is equal to $e:=\sum_{k=0}^{\infty} 1/k!$.
- **22.** Prove that the sequence $P_N := \prod_{k=1}^N \frac{1}{1-1/p_k}$, where $p_1 = 2, p_2 = 3, \ldots, p_k, \ldots$ are consecutive prime numbers, tends to $+\infty$, and derive that the series $\sum 1/p_k$ diverges.