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EXPLICIT RECONSTRUCTION

ALEXANDER GIVENTAL

Abstract. In Part VII, we proved that the range LX of the big
J-function in permutation-equivariant genus-0 quantum K-theory
is an overruled cone, and gave its adelic characterization. Here we
show that the ruling spaces are Dq-modules in Novikov’s variables,
and moreover, that the whole cone LX is invariant under a large
group of symmetries of LX defined in terms of q-difference oper-
ators. We employ this for the explicit reconstruction of LX from
one point on it, and apply the result to toric X, when such a point
is given by the q-hypergeometric function.

Adelic characterization

We begin where we left in Part VII: at a description of the range
L ⊂ K in the space K of K0(X) ⊗ Λ-value rational functions of q of
the J-function of permutation-equivariant quantum K-theory of a given
Kähler target space X:

J := 1− q + t(q) +
∑

α

φα

∑

n,d

Qd〈
φα

1− qL
; t(L), . . . , t(L)〉Sn

0,1+n,d.

We proved that L is an overruled cone, i.e. it is swept by a family of
certain Λ[q, q−1]-modules, called ruling spaces:

L =
⋃

t∈Λ+

(1− q)S(q)−1
t K+,

where St is a certain family of “matrix” functions rational in q, whose
construction we are not going to remind here. Let us recall the adelic
characterization of L, which will be our main technical tool.

It is given in terms of the overruled cone Lfake ⊂ K̂ in the space
of vector-valued Laurent series in q − 1, describing the range of the
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2 A. GIVENTAL

J-function in fake quantum K-theory of X:

Lfake =
⋃

t∈Λ

(1− q)Tt, Tt = Sfake(q)−1
t K̂+.

Here Sfake
t is some “matrix” Laurent series, Tt is a tangent space to

Lfake, containing (1 − q)Tt, and tangent to Lfake at all points of the
ruling space (1− q)Tt.
According to the last section of Part VII, a rational function f ∈ K

lies in L if and only if its Laurent series expansions f(ζ) near q = 1/ζ
satisfy the following three conditions:
(i) f(1) ∈ Lfake;
(ii) when ζ 6= 0, 1,∞ is a primitive mth root of unity,

f(ζ)(q
1/m/ζ) ∈ L

(ζ)
t ,

a certain subspace in K̂, determined by the tangent space Tt to Lfake

at the point f(1);
(iii) when ζ 6= 0,∞ is not a root of unity, f(ζ) is a power series in

q − 1/ζ, i.e. f has no pole at q = 1/ζ.

The subspace L
(ζ)
t is described as ∇ζΨ

m(Tt) ⊗Ψm(Λ) Λ, where the
Adams operation Ψm acts by Ψm(q) = qm and naturally on the λ-
algebra K0(X)⊗ Λ, and ∇ζ is the operator of multiplication by

e

∑
k>0

(
Ψk(T ∗

X)

k(1−ζ−kqk/m)
−

Ψkm(T ∗

X)

k(1−qkm)

)

.

In its turn, the cone Lfake ⊂ K̂ (and hence its tangent spaces Tt)
can be expressed in terms of the cone LH ⊂ H, describing the range
of cohomological J-function in the space H of Laurent series in one
indeterminate z with coefficients inHeven(X)⊗Λ. Namely, according to
the Hirzebruch–Riemann–Roch theorem [2] in fake quantum K-theory,

qch(Lfake) = △LH ,

where the quantum Chern character qch : K̂ → H acts by qch q = ez,
and by the natural Chern character ch : K0(X) ⊗ Λ → Heven(X) ⊗ Λ
on the vector coefficients, while △ acts as the multiplication in the
classical cohomology of X by the Euler–Maclaurin asymptotics (see
[3, 2, 6]) of the infinite product:

△ ∼
∞∏

r=1

td(TX ⊗ q−r).

Using all these descriptions, we are going on explore how the string
and divisor equations of quantum cohomology theory manifest in the
genus-0 permutation-equivariant quantum K-theory.
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Divisor equations and Dq-modules

Let p1, . . . , pK be a basis inH2(X,R) consisting if integer numerically

effective classes, and let Qd = Qd1
1 · · ·QdK

K , where di = pi(d), represent
degree-d holomorphic curves in the Novikov ring. We remind that the
Novikov variables are included into the ground λ-algebra Λ.
The loop space H of Laurent series in z with vector coefficients in

Heven(X) ⊗ Λ is equipped with the structure of a module over the
algebra D of differential operators in the Novikov variables, so that Qi

acts as multiplication by Qi, and Qi∂Qi
acts as zQi∂Qi

−pi. The divisor
equations in quantum cohomology theory imply (see e.g. [4]), that

linear vector fields f 7→ (Qi∂Qi
−pi/z)f in H are tangent to LH ⊂ H.

In follows that the ruling spaces (as well as tangent spaces) of LH are
D-modules, i.e. are invariant with respect to each differential operator
D(Q, zQ∂Q − p, z), and moreover the flow ǫ 7→ eǫD/z of the vector field
f 7→ Df/z preserves LH .
Indeed, for f ∈ LH , the vector (Qi∂Qi

− pi)f lies in T|fL
H , and hence

(zOi∂Qi
−pi)f lies in the same ruling space zTfL

H as f does. Therefore
so does Df , and hence Df/z ∈ TfL

H , i.e. the vector field f 7→ Df/z is
tangent to LH .
Note that the operator △ relating LH and Lfake involves multipli-

cation in the commutative classical cohomology algebra Heven(X), but
does not involve Novikov’s variables. Consequently, the tangent and
ruling spaces of qch(Lfake) are D-modules too, and moreover, the flows
ǫ 7→ eǫD/z preserve qch(Lfake).
We equip the space K of vector-valued rational functions of q with

the structure of a module over the algebra Dq of finite difference op-
erators. It is generated (over the algebra of Laurent polynomials in q)
by multiplication operators, acting as multiplications by Qi, and trans-
lation operators, acting as Piq

Qi∂Qi , where Pi is the multiplication in
K0(X) by the line bundle with the Chern character chPi = e−pi .

Proposition (cf. [6, 4]). The ruling spaces of the overruled cone L ⊂
K of permutation-equivariant quantum K-theory is are Dq-modules.

Proof. If f ∈ L, it passes the tests (i),(ii),(iii) of adelic characteri-
zation. We need to show that g := Piq

Qi∂Qi f , which obviously lies in
K, also passes the tests (and with the same t ∈ K0(X)⊗ Λ+). This is
obvious for test (iii), and is true about test (i) because of the above D-
module (and hence Dq-module) property of the ruling spaces (1− q)Tt

of Lfake. To verify test (ii), we write:

g(ζ)(q
1/m/ζ) = Pi(q

1/m)Qi∂Qiζ−Qi∂Qi f(ζ)(q
1/m/ζ).
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First, note that the operator ∇ζ relating L(ζ) with Ψm(Tt) does not
involve Novikov’s variables and commutes with Dq. Next, let us elu-
cidate the notation Ψm(Tt) ⊗Ψm(Λ) Λ. In fact the space so indicated
consists of linear combinations

∑
a λa(Q, q)Ψm(fa), where fa ∈ Tt, and

λa ∈ Λ[[q − 1]]. We have the following commutation relations:

PiΨ
m = ΨmP

1/m
i , (q1/m)Qi∂QiΨm = q

Qm
i ∂Qm

i Ψm = Ψm(q1/m)Qi∂Qi ,

ζQi∂QiΨm = ζ
mQm

i ∂Qm
i Ψm = Ψm.

Therefore

Pi(q
1/m)Qi∂Qiζ−Qi∂Qi

(
∑

a

λaΨ
m(fa)

)
=

∑

a

(
q1/m/ζ)Qi∂Qi

Qiλa

)
Ψm

(
P 1/m(q1/m)Qi∂Qi fa

)
,

which lies in Ψm(Tt)⊗Ψm(Λ) Λ since Tt is invariant under the operator

P 1/m(q1/m)Qi∂Qi = e(zQi∂Qi
−pi)/m. �

Let D(PqQ∂Q , q) be a constant coefficient finite difference operator,
by which we mean a Laurent polynomial expression in translation op-
erators Piq

Qi∂Qi , and maybe q, with coefficients from Λ independent
of Q. We assume below that ǫ ∈ Λ+ to assure ǫ-adic convergence of
infinite sums.

Theorem 1. The operator

e
∑

k>0Ψ
k(ǫD(PqkQ∂Q , q))/k(1− qk)

preserves L ⊂ K.

Proof. We show that if (1 − q)f passes tests (i), (ii), (iii) of the
adelic characterization of L, then (1− q)g, where

g := e
∑

k>0Ψ
k(ǫD(PqkQ∂Q , q))/k(1− qk) f ,

also does.
(i) Suppose (1−q)f(1) lies in the ruling space (1−q)Tt ⊂ Lfake. Note

that the exponent
∑

k>0Ψ
k(ǫD(PqkQ∂Q , q))/k(1 − qk) has first order

pole at q = 1. According to the discussion above the flow defined by

such an operator on K̂ preserves Lfake, and therefore maps its tangent
spaces to tangent spaces, and ruling spaces to ruling spaces, and more-
over, the operators regular at q = 1 preserve each ruling and tangent
space. It follows that (1− q)g(1) ∈ (1− q)Tt′ ⊂ Lfake, where

Tt′ := e
∑

k>0Ψ
k(ǫD(PqkQ∂Q , 1))/k2(1− q)Tt.
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(ii) We have

Ψm(Tt′) = e
∑

k>0Ψ
mk(ǫD(PqkQ∂Q , 1))/k2(1− qm)Ψm(Tt).

On the other hand, for a primitive mth root of unity ζ,

g(ζ)(q
1/m/ζ) = e

∑

k>0 Ψ
k(ǫD(P (q1/m/ζ)

kQ∂Q ,q1m/ζ))/k(1−qk/m/ζk)f(ζ)(q
1/m/ζ)

= eA e
∑

l>0 Ψ
ml(ǫD(PqlQ∂Q , 1))/ml(1− ql)f(ζ)(q

1/m/ζ),

where A is some operator regular at q = 1. It comes out of refactoring
eA+B/(1−q), where A and B are regular at q = 1, as eAeB/(1−q). We use
here the fact that the operators A and B have constant coefficients,
and hence commute.
Note that the exponents

∑
k>0Ψ

mk(ǫD(Q,PqkQ∂Q , 1))/k2(1 − qm)
and

∑
l>0Ψ

ml(ǫD(Q,PqlQ∂Q , 1))/ml(1−ql) agree modulo terms regular
at q = 1 (which, again, commute with the singular terms). Since we
are given that

f(ζ)(q
1/m/ζ) ∈ ∇ζ Ψ

m(Tt)⊗Ψm(Λ) Λ,

and since ∇ζ commutes with Dq, we conclude (using the refactoring
again), that

gζ(q
1/m/ζ) ∈ ∇ζ Ψ

m(Tt′)⊗Ψm(Λ) Λ.

Note that the exponent in eA involves translations Piq
Qi∂Qi as well as

ζ−Qi∂Qi , and so it is important, that (as we’ve checked in the proof of
above Proposition), such operators preserve the space Ψm(Tt′)⊗Ψm(Λ)Λ.
(iii) If f is regular at q = 1/ζ, where ζ 6= 0,∞ is not a root of unity,

g is obviously regular there too. �

Corollary (the q-string equation). The range L ⊂ K of permutation
-equivariant J-function is invariant under the multiplication operators:

f 7→ e
∑

k>0Ψ
k(ǫ)/k(1− qk) f , ǫ ∈ Λ+.

Proof: Use Theorem 1 with D = 1.

Examples

Example 1: d = 0. In degree 0, i.e. modulo Novikov’s variables,
the cone L ⊂ K coincides with the cone Lpt over the λ-algebraK

0(X)⊗
Λ. Theorem 1 and Proposition allow one to recover the part of Lpt over
the λ-algebra Λ′ = K0(X)pr⊗Λ, where byK0(X)pr (the primitive part)
we denote the part of the ring K0(X) generated by line bundles.
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Let monomials P a := Pα1
1 · · ·P aK

K run a basis of K0(X)pr. Applying
the above theorem to the finite difference operator

D =
∑

a

ǫaP
aqaQ∂Q :=

∑

a

ǫa

K∏

i=1

P ai
i qaiQi∂Qi , ǫa ∈ Λ+,

and acting on the point J ≡ 1 − q modulo Novikov’s variables, we
recover over Λ′ the small J-function of the point:

(1− q)e
∑

a

∑
k>0 Ψ

k(ǫa)P
ka/k(1− qk) ≡ 1− q +

∑

a

ǫaP
a mod K−.

Furthermore, applying linear combinations
∑

a

ca(q)P
aqaQ∂Q

with coefficients ca ∈ Λ[q, q−1] which are arbitrary Laurent polynomi-
als in q, we get, according to Proposition, points in the same ruling
space of the cone L. Modulo Novikov’s variables this effectively results
in multiplying by arbitrary elements

∑
a ca(q)P

a from Λ′[q, q−1], and
therefore yields the entire cone Lpt over Λ

′.

Example 2: X = CP 1. We know1 one point on L = LCP 1 , the
small J-function:

J (0) = (1− q)
∑

d≥0

Qd

(1− Pq)2(1− Pq2)2 · · · (1− Pqd)2
.

Here P = O(−1) is the generator of K0(CP 1). It satisfies the relation
(1− P )2 = 0. The K-theoretic Poincaré pairing is determined by

χ(CP 1;φ(P )) = ResP=1
φ(P )

(1− P )2
dP

P
.

We use Theorem 1 with the operator D = λ+ ǫPqQ∂Q , λ, ǫ ∈ Λ+, and
obtain a 2-parametric family of points on LCP 1 :

e
∑

k>0(Ψ
k(λ) + Ψk(ǫ)P kqkQ∂Q)/k(1− qk) J (0) =

(1− q)e
∑

k>0Ψ
k(λ)/k(1− qk)

∑

d≥0

Qd e
∑

k>0Ψ
k(ǫ)P kqkd/k(1− qk)

(1− Pq)2(1− Pq2)2 · · · (1− Pqd)2
.

Examine now two specializations.

1From various sources: Part IV (by localization), or [6] (by adelic characteriza-
tion), or [5] (by toric compactifications).
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Firstly, as a consistency check, let us extract from this the degree-1
part of F0. Modulo Q2, we are left with

J ≡ e
∑

k>0 Ψ
k(λ)/k(1−qk)

(
1− q +

(1− q)Q

(1− Pq)2
e
∑

k>0 Ψ
k(ǫ)P kqk/k(1−qk)

)
.

Modulo K− (and Q2), we have: [J ]+ ≡ 1 − q + λ + ǫP . According to
Part VII, Corollary 3,

F0(t) = −
1

2
Ω([J (t)]+,J (t))−

1

2
(Ψ2(t(1)), 1).

For degree d = 1 part J1 of J , we have

−Ω([J ]+,J1) = Resq=0,∞

(
1−

1

q
+ λ+ ǫP,

(1− q)

(1− Pq)2
eA(q)

)
dq

q
,

where A(q) =
∑

k>0(Ψ
k(λ)+Ψk(ǫ)P kqk)/k(1− qk). The 1-form has no

pole at q = ∞. Since ((1− q)/(1− Pq)2)
′
q=0 = 2P − 1, and A′(0) =

λ+ ǫP , the residue at q = 0 is calculated as

(
1 + λ+ ǫP, eA(0)

)
−
(
1, (2P − 1)eA(0) + (λ+ ǫP )eA(0)

)
=

ResP=1
2(1− P )eA(0)

(1− P )2
dP

P
= 2eA(0) = 2e

∑

k>0 Ψ
k(λ)/k.

Let us check this rather trivial result “by hands”. The degree d = 1
part of F0(t) at t = λ+ ǫP is defined as

∑
n≥0〈λ+ ǫP, . . . , λ+ ǫP 〉Sn

0,n,1.

Since there is only one rational curve of degree 1 in CP 1, the moduli
space X0,n,1 = M0,n(CP

1, 1) is obtained from (CP 1)n by some blow-
ups along the diagonals. The evaluation maps evi : X0,n,1 → CP 1

factor through (CP 1)n as the projections (CP 1)n → CP 1. Therefore
the correlator sum can be evaluated as

∑

n≥0

(
H∗
(
CP 1;λ+ ǫP

)⊗n
)Sn

=
∑

n≥0

(λ⊗n)Sn

because for P = O(−1) we have H∗(CP 1;P ) = 0. Let us remind from
Part I that for elements of a λ-algebra,

(λ⊗n)Sn :=
1

n!

∑

h∈Sn

∏

k>0

Ψlk(h)(λ),

where lk(h) is the number of cycles of length k in the permutation h.

Thus, the correlator sum indeed coincides with e
∑

k>0 Ψ
k(λ)/k.
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Secondly, let us return to our 2-parametric family of points on LCP 1 ,
and specialize it to the symmetrized theory, where only the Sn-invariant
part of sheaf cohomology is taken into account. For this, we specialize
the λ-algebra to Λ = Q[[λ, ǫ,Q]] with Ψk(λ) = λk,Ψk(ǫ) = ǫk (and
Ψk(Q) = Qk as before). Some simplifications ensue. Since

qkd = 1− (1− qk)(1 + qk + · · ·+ qk(d−1)),

we have

e
∑

k>0 ǫ
kP kqkd/k(1− qk) = e

∑
k>0 ǫ

kP k/k(1− qk)
d−1∏

r=0

e−
∑

k>0 ǫ
kP kqrk/k

= e
∑

k>0 ǫ
kP k/k(1− qk)

d−1∏

r=0

(1− ǫPqr).

Thus, we obtain the following 2-parametric family of points on Lsym
CP 1 :

J sym
CP 1 = (1− q)e

∑
k>0(λ

k + ǫkP k)/k(1− qk)
∑

d≥0

Qd

∏d−1
r=0(1− ǫPqr)

∏d
r=1(1− Pqr)2

.

Note that the projection of this series to K+ along K− picks contribu-
tions only from the terms with d = 0 and k = 1:

[J sym
CP 1 ]+ = 1− q + λ+ ǫP.

Therefore the series represents the small J-function of the symmetrized
quantum K-theory of CP 1. The exponential factor is actually equal to
expq(λ/(1− q)) expq(ǫP/(1− q)). Thus, we obtain:

J sym
CP 1 (λ+ ǫP ) = mod (1−P )2

(1− q)
∞∑

m=0

∞∑

l=0

∞∑

d=0

λm ǫl P l Qd
∏d−1

r=0(1− ǫPqr)
∏m

t=1(1− qt)
∏l

s=1(1− qs)
∏d

r=1(1− Pqr)
.

Reconstruction theorems

As in Example 1, assume that p1, . . . , pK is a numerically effective
integer basis in H2(X,Q), that Novikov’s monomials Qd = Qd1

1 . . . QdK
K

represent degree d holomorphic curves inX in coordinates di = pi(d) on
H2(X), that Pi are line bundles with chPi = e−pi , and that monomials
P a = P a1

1 · · ·P ak
K run a basis in K0(X)pr, the primitive part of the

K-ring. We also write a.d for the value
∑

aidi of −c1(P
a) on d.
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Theorem 2 (explicit reconstruction). Let I =
∑

d IdQ
d be a point in

the range L ⊂ K of the J-function of permutation-equivariant quantum
K-theory on X, written as a vector-valued series in Novikov’s variables.
Then the following family also lies in L:

∑

d

IdQ
de
∑

k>0

∑
a Ψ

k(ǫa)P
kaqk(a.d)/k(1− qk), ǫa ∈ Λ+.

Moreover, for arbitrary Laurent polynomials ca ∈ Λ[q, q−1], the follow-
ing series also lies in L:

∑

d

IdQ
de
∑

k>0

∑
aΨ

k(ǫa)P
kaqk(a.d)/k(1− qk)

∑

a

ca(q)P
aqa.d.

Furthermore, when K0(X) = K0(X)pr, the whole cone L ⊂ K is pa-
rameterized this way.

Proof. We first work over Λ′ freely generated as λ-algebra by the
“time” variables ǫa, and use Theorem 1 with the Q-independent finite
difference operator D =

∑
a ǫaP

aqaQ∂Q . We conclude that the family

e
∑

k>0

∑

a Ψk(ǫa)P kaq
kaQ∂Q/k(1−qk)I =

∑

d

IdQ
de

∑

k>0

∑

a Ψk(ǫa)Paqk(a.d)/k(1−qk)

lies in the cone L, defined over Λ′. To obtain the second statement, we
apply Proposition, using finite difference operators

∑
a ca(q)Paq

aQ∂Q .
Afterwards we specialize the “times” ǫa to any values ǫa ∈ Λ (which
at this point may become dependent on Q). Finally, when K0(X) =
K0(X)pr, we use the formal Implicit Function Theorem to conclude
that the whole cone L is parameterized, because this is true modulo
Novikov’s variables, as Example 1 shows. �

Example: X = CPN. According to Theorem 2, the entire cone L
is parameterized as follows:

J = (1− q)
∑

d≥0

Qd e
∑

k>0

∑N
a=0 Ψ

k(ǫa)P kaqkad/k(1−qk)
∑N

a=0 ca(q)P
aqad

(1− Pq)N+1(1− Pq2)N+1 · · · (1− Pqd)N+1
.

Of course, this is obtained by applying Theorem 2 to the small J-
function J (0) from [5] (also [6], or Parts II–IV in the non-equivariant
limit). Here ǫa ∈ Λ, ca(q) are arbitrary Laurent polynomials in q with
coefficients in Λ, and P a, a = 0, . . . , N , P = O(−1), are used for a
basis in K0(X). Perhaps, the basis (1 − P )a, a = 0, . . . , N , is more
useful (cf. [4]), and we get yet another parameterization of L:

(1− q)
∑

d≥0

Qd e
∑

k>0

∑N
a=0 Ψ

k(ǫa)(1−P kqkd)a/k(1−qk)
∑N

a=0 ca(q)(1− Pqd)a

(1− Pq)N+1(1− Pq2)N+1 · · · (1− Pqd)N+1
.
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We return now to the context of Part VII, where we studied the
mixed J-function J (x, t), involving two types of inputs: permutable t

and non-permutable x, both taken from K+. The cone L ⊂ K repre-
sents the range of t 7→ J (0, t). Recall that according to the general
theory, it is the union of ruling spaces (1−q)Tt, where t = T (t) is given
by a certain non-linear map

T : K0(X)⊗ Λ+ ⊕ (1− q)K+ → K0(X)⊗ Λ+.

At the same time, for a fixed value of t, the range of the ordinary J-
function x 7→ J (x, t) is an overruled Lagrangian cone Lt ⊂ K, which
shares with L one ruling space, Tt, corresponding to t = T (t). Each
tangent space of each cone Lt is tangent to Lt along one of the ruling
spaces (e.g. Tt is tangent along (1 − q)Tt), and is related with this
ruling space by the multiplication by 1−q. As a consequence, not only
each ruling (and tangent) space of each Lt is a Dq-module (which is
proved on the basis of adelic characterization as in Proposition above),
but also each cone Lt is invariant under the flow

f 7→ eǫD(Q,Pq
Q∂Q ,q)/(1−q)f ,

where D ∈ Dq. We use this to reconstruct the family Lt.

Theorem 3. Let I =
∑

IdQ
d (as in Theorem 2). Then

I(ǫ) =
∑

d

Id(ǫ)Q
d :=

∑

d

IdQ
de

∑

k>0

∑

a Ψk(ǫa)P kaqk(a.d)/k(1−qk), ǫa ∈ Λ+

represent a family of points on the cones Lt(ǫ) (one point on each cone),
and the following family of points, parameterized by τa ∈ Λ and by
ca ∈ Λ[q, q−1], lies on Lt(ǫ):

∑

d

Id(ǫ)Q
d e
∑

a τaP
aqa.d/(1− q)

∑

a

ca(q)P
aqa.d.

Moreover, if K0(X) = K0(X)pr, for each t ∈ K0(X) ⊗ Λ+ the whole
cone Lt is thus parameterized.

Proof. It is clear from computation modulo Novikov’s variables
that the family I(ǫ) has no tangency with the ruling spaces, hence
represents at most one point from each Lt (and does represent one,
when K0(X) = K0(X)pr). Given one point, I(ǫ), on Lt(ǫ), we generate
more points by machinery discussed above: applying the commuting
flows

e
∑

a τaPaq
O∂Q/(1−q)I(ǫ) =

∑

d

QdId(ǫ) e
∑

a τaPaqa.d/(1−q),
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followed by the application of the operators
∑

a ca(q)P
qqaQ∂Q , where τa

and the coefficients of ca are independent variables. Afterwards they
can be specialized to some values in Λ (in particular, depending on
Q). In the case when K0(X) = K0(X)pr, it follows from the Implicit
Function Theorem and Example 1 about the limit to d = 0, that the
entire cone Lt for each t is thus obtained. �

Example: X = CPN. It follows that for fixed values of ǫa, the
corresponding cone Lt(ǫ) is parameterized as

(1− q)
∑

d≥0

Qd e
∑N

a=0

(

τa
Paqad

1−q
+
∑

k>0 Ψ
k(ǫa)

Pkaqkad

k(1−qk)

)

∑N
a=0 ca(q)P

aqad

(1− Pq)N+1(1− Pq2)N+1 · · · (1− Pqd)N+1
,

and all Lt are so obtained.

Remarks. Reconstruction theorems in quantum cohomology and
K-theory go back to Kontsevich–Manin [9] and Lee–Pandharipande
[10] respectively. Theorem 3 is a slight generalization (from the case
t = 0) of the “explicit reconstruction” result [4] in the ordinary (non-
permutation-equivariant) quantum K-theory, which in its turn mimics
the results of quantum cohomology theory already found in [1, 7], and
shares the methods based on finite difference operators with the K-
theoretic results of [8].
Theorems of this section show that when K0(X) is generated by

line bundles, the entire range L of the J-function in the permutation-
equivariant genus-0 quantum K-theory ofX, as well as the entire family
Lt of the overruled Lagrangian cones representing the “ordinary” J-
functions, depending on the permutable parameter, t, can be explicitly
represented in a parametric form, given one point on any of these cones.
In essence, all genus-0 K-theoretic GW-invariants of X, permutation-
equivariant, ordinary, or mixed, are thereby reconstructed from any
one point: a K0(X)-valued series

∑
d IdQ

d in Novikov’s variables.
In the case of a toric X, the results of Part V exhibit such a point in

the form of the q-hypergeometric series mirror-symmetric to X. Need-
less to say, the same applies to toric bundles spaces, or super-bundles
(a.k.a. toric complete intersections), as well as to the torus-equivariant
versions of K-theoretic GW-invariants. Thus “all” (torus-equivariant or
not; permutation-equivariant, ordinary, or mixed) K-theoretic genus-0
GW-invariants of toric manifolds, toric bundles, or toric complete in-
tersections are computed in a geometrically explicit form, illustrated
by the above example.
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