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A SYMPLECTIC FIXED POINT

THEOREM FOR TORIC MANIFOLDS

Alexander B. Givental

In this paper, by a toric manifold we mean a nonsingular
symplectic quotient M = Cn//T k of the standard symplectic
space by a linear torus action. Such a toric manifold is in fact
a complex Kahler manifold of dimension n − k. We denote
p(M) and c(M) the cohomology class of the Kahler symplectic
form and the first Chern class of M respectively. They both
are effective, that is, Poincaré-dual to some holomorphic hy-
persurfaces. We call a homology class in H2(M, Z) effective if it
has non-negative intersection indices with fundamental cycles
of all compact holomorphic hypersurfaces in M , and denote E
the set of all non-zero effective homology classes. Our main
result is the following

Theorem. Let M be a compact toric manifold with an integer
class p(M) of the symplectic form. Then for any hamiltonian
diffeomorphism h : M → M

(i) the number of its fixed points is not less than

max
γ∈E

〈c(M), γ〉/〈p(M), γ〉 ,

(ii) the total multiplicity of its fixed points is not less than
dim H∗(M, C).

This formulation deserves some discussion.
1. By definition a hamiltonian diffeomorphism is the time-

1 map of a non-autonomous hamiltonian system on M . In his
original formulation of the symplectic fixed point conjecture, V.
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Arnold [Ar1],[Ar2] called such h “homologous to the identity”.
The conjecture itself says that “on a compact symplectic mani-
fold M the number of fixed points of such h is not less than the
number of critical points of some function on M .” One may
consider the theorem as cup-length and Betti-sum estimates
for the numbers of fixed points and thus as a confirmation of
Arnold’s conjecture for toric manifolds. In fact all compact
toric manifolds are simply-connected and therefore hamilton-
ian transformations form just the identity component in the
symplectomorphism group of M .

2. The second statement is included in the theorem only
for the sake of completeness: It follows from Lefschetz’s theo-
rem and holds for any diffeomorphism from the identity compo-
nent (not necessarily hamiltonian and without the assumption
that p is integer of course): any toric manifold has holomor-
phic cell decompositions and thus its Betti sum equals its Euler
characteristic.

3. The first statement of the theorem is absolutely non-
trivial. But it is not very general too: it happens very often
that 〈c(M), γ〉 ≤ 〈p(M), γ〉 for all γ ∈ E, and the conclusion
that h has a fixed point still follows from Lefschetz’s theorem.

Example. Our theorem implies that a hamiltonian transfor-
mation of S2 × S2 has at least two fixed points provided that
the symplectic areas of the factors have integer ratio and gives
nothing new against Lefschetz’s theorem if the ratio is frac-
tional.

4. The most general results so far on symplectic fixed
points cover a broad variety of symplectic manifolds satisfying
however the following monotonicity restriction: a symplectic
manifold M is called monotone if its symplectic class and first
Chern class are positively proportional on spherical 2-cycles in
M :

∃µ ∈ [0,∞] ∀γ : S2 → M 〈p(M), γ〉 = µ〈c(M), γ〉.

Example. S2×S2 is monotone iff the symplectic areas of the
factors are equal.
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Arnold’s conjecture was confirmed for monotone compact
symplectic manifolds by

A. Floer [Fl1] for µ = 0 (1987),
A. Floer [Fl2] for 0 < µ < ∞ (1989), and
H. Hofer and D. Salamon [HoS] for µ = ∞ (that is, c(M) =

0) (1991).
As far as I know our main theorem (along with some results

in [HoS]) gives the first examples of non-trivial symplectic fixed
point results for non-monotone symplectic manifolds.

5. Although all the symplectic fixed point theorems give
rise to the Morse-type estimate (for the total multiplicity # of
fixed points) that was expected according to Arnold’s conjec-
ture (# ≥ Betti-sum(M)), the cup-length-type estimates for
the number of geometrically distinct fixed points sometimes
lead to weaker results than expected. The first discrepancy
of this sort arose in Y.-G. Oh’s paper [Oh] on fixed points on
T 2k × CPm where a lower bound for the fixed point number
was found to be max(m + 1, 2k + 1) instead of the cup-length
bound m + 2k + 1 for the critical point number on this man-
ifold. Floer’s theorem [Fl2] on strictly monotone symplectic
manifolds (0 < µ < ∞) gives another example of this kind.
In his theorem the lower estimate for the fixed point number
is the greatest common divisor of all values of the first Chern
class of the symplectic manifold. Applied to monotone toric
manifolds (c(M) = µp(M), p is primitive, µ ∈ N) this gives
#(h) ≥ µ (which is in fact worse than the cup-length estimate
dim(M) + 1 for critical points of functions unless M ≃ CPm

in which case µ = 1).
We see that our main theorem gives a straightforward gen-

eralization of Floer’s theorem to non-monotone toric manifolds
— and inherits the aforementioned discrepancy as well.

Now let me say a few general words about the proof of our
theorem. It is not a secret anymore that symplectic fixed point
theorems are Morse-theoretic results for action functionals on
spaces of loops in symplectic manifolds. The main difficulty
is not that the loop spaces are infinite-dimensional but rather
comes from the fact that both Morse index and coindex of
action functionals at critical points are infinite. This means
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that the Morse complex one should construct from the critical
points has nothing to do with usual homotopy invariants of the
loop spaces. In order to handle the problem one has to con-
struct a sort of semi-infinite homology theory (the term comes
from graded Lie algebra theory [F], see also [V]).

A general approach to such a homology theory for symplec-
tic loop spaces leads to Floer homology. Floer’s construction
depends on Gromov’s compactness theorem for moduli spaces
of holomorphic curves in almost-complex manifolds [Gro] and
seems to fail beyond the monotonicity assumption. It is rather
a matter of faith whether this failure is only technical.

The idea of the present paper was to try a more elemen-
tary approach in a particular case (beyond the monotonicity re-
striction) where the approach would do. The method we mean
is the finite-dimensional approximation of action functionals,
and it usually works if the symplectic manifold in question
can be obtained somehow from a symplectic vector space. For
instance, the pioneer Conley-Zehnder theorem [CZ] on sym-
plectic tori (as a twist of fate, they are not toric manifolds)
exploits truncations of Fourier series of loops lifted to the uni-
versal covering of the torus. Another idea, by B. Fortune and
A. Weinstein [FW], was to represent CPm as a symplectic re-
duction of Cm+1 by a circle action and to look for critical loops
of a suitable invariant action functional in Cm+1. We borrow
this idea replacing the circle by a torus and thus come to the
category of toric manifolds.

As a finite-dimensional approximation we use discrete
loops (rather than Fourier truncation) — a method suggested
by M. Chaperon [Cha] and Yu.Chekanov [Che] (see also [LS])
— but in a modified form successfully exploited in my pre-
ceding papers [Gi1],[Gi2]. However it turns out that in non-
monotone case action functionals do not have a representative
(in some sense) finite-dimensional approximation, and we face
the necessity of constructing the semi-infinite cohomology as a
direct limit over an exhausting sequence of finite-dimensional
approximations.

Another complicating circumstance is that our action func-
tionals are circle-valued maps rather than usual functions, and
therefore we deal with Morse-Novikov theory of multi-valued
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functionals: our semi-infinite cohomology bears some impor-
tant algebraic super-structure — an action of a lattice of cov-
ering transformations.

Furthermore, since our hamiltonian transformations “live”
in Cn instead of Cn//T k their fixed points form whole T k-
orbits, and thus we deal with equivariant Morse theory and
T k-equivariant cohomology respectively.

Finally, in order to obtain a lower estimate for the number
of critical points one needs not only to construct a suitable
cohomology but also to prove that it is not trivial or, in other
words, to calculate the cohomology (for some special cases at
least). It turns out that the toric manifolds are constructive
enough in order to make such a computation possible, but the
answer and the computation itself depend on all the geometri-
cal combinatorics of Newton polyhedra that usually accompa-
nies the theory of toric manifolds.

One could pronounce the final sentence to our elementary
approach in either of the following opposite ways:
• It is fascinatingly profound: it fits together symplectic

semi-infinite equivariant Morse-Novikov critical point the-
ory and algebraic geometry on spectra of some cohomologi-
cal algebras in terms of combinatorial geometry on Newton
polyhedra;

• It is discouragingly complicated: it mixes together sym-
plectic, semi-infinite, equivariant, Morse-Novikov critical
point theory with algebraic geometry on spectra...

Leaving this choice to reader’s taste, I would like to express
my gratitude to all participants of the symplectic topology sec-
tion at the AMS meetings in Baltimore and of the Berkeley-
Davis-Santa Cruz-Stanford symplectic seminar where prelim-
inary versions of this work were presented, and especially to
Ya. Eliashberg, D. Fuchs, V. L. Ginzburg, D. McDuff, Y.-G.
Oh, and A. Weinstein for numerous stimulating discussions.

§1. Toric Manifolds
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We recall here a definition and some facts on symplectic
toric manifolds. The basic reference for us will be the last
chapter of the remarkable book [Au] by M. Audin, The Topol-
ogy of Torus Actions on Symplectic Manifolds. Our approach
here to toric manifolds is only a little different from that in the
book (basically we dualize notations) and readers will easily
recognize corresponding formulations in the book.

Let Cn denote the standard coordinate 2n-dimensional real
vector space provided with the standard symplectic form

imaginary part(− 1
2

∑

dzi ∧ dz̄i) .

The maximal real torus Tn acts on Cn by hamiltonian linear
transformations

zi 7→ exp(2π
√
−1ti)zi , i = 1, . . . , n.

This action is generated by n quadratic hamiltonians

π|z1|2, . . . , π|zn|2 .

By definition,1 a toric symplectic manifold is a symplectic
quotient of Cn by a subtorus T k ⊂ Tn.

In more detail, one fixes a subtorus T k ⊂ Tn and considers
the momentum map of its action on Cn,

P : C
n → R

k∗ = (Lie T k)∗ .

Then one picks a regular value p of the momentum map and
defines the corresponding toric orbifold

Mp = P−1(p)/T k ,

which automatically inherits a symplectic form from Cn.
In even more detail, the momentum map splits as:

1As I learned from V. L. Ginzburg (with reference to [KT]) the usual

algebraic construction of toric manifolds that begins with a fan in R
n−k is

wider than our definition which works only for symplectic toric manifolds.
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C
n −−−−→ R

n∗ = (Lie Tn)∗


yπ

Rk∗ = (Lie T k)∗

where π is the projection dual to the embedding Lie T k ⊂
Lie Tn, and the horizontal arrow is the momentum map
(π|z1|2, . . . , π|zn|2) of the Tn-action. Its image is the first or-
thant Π in Rn∗,

Π = {t ∈ R
n∗|ti ≥ 0, i = 1, . . . , n} .

Unless the opposite is specified, Rn and Rk will always
mean Lie Tn and Lie T k respectively, Zn ⊂ Rn, Zk ⊂ Rk

denote the kernels of the exponential maps t 7→ exp(2πt): Lie
Tm → Tm. Thus R

n and Z
n really have the canonical posi-

tive basis e1, . . . , en (while the notations Rk and Zk are a bit
frivolous).

Most properties of toric manifolds can be formulated in
combinatorial terms of the projection π : Π → π(Π).

1. Regular momentum values.2 The irregular locus of
P consists of projections of all (k − 1)-dimensional faces of Π.

2. Dimension. For a regular p, dimR P−1(p)/T k =
2(n − k).

3. Compactness. Toric varieties P−1(p)/T k are compact
(they are or are not for all p ∈ π(Π) simultaneously) iff

(ker π) ∩ Π = {0} .

4. Smoothness. For a regular p ∈ π(Π) the toric variety
P−1(p)/T k is non-singular iff projections to Rk∗ of all the k-
dimensional faces of Π that cover p are isomorphisms over Z

2Be careful: the corresponding formulation on p.163 in [Au] contains
a misprint which can make the following two pages in the book confusing!
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(that is the corresponding integer k × k-determinants equal
±1).

5. Betti sum. The Betti sum of a toric manifold Mp

equals the number of the k-dimensional faces of Π that cover
p when projected to Rk∗. In fact it is the number of vertices
of the convex polyhedron

(1.1) π−1(p) ∩ Π ⊂ R
n∗

This polyhedron is identified with the image of the momentum
map of the quotient hamiltonian action of Tn/T k on the toric
manifold Mp. Its vertices are in one-to-one correspondence
with critical points of some perfect Morse function on Mp —
the hamiltonian of any dense 1-parametric subgroup in the
quotient torus [At],[G].

6. Cohomology. Let Z[u] denote the graded algebra of
polynomials on R

n (with integer coefficients), u = (u1, . . . , un)
be its n generators of degree 2. We introduce two ideals in Z[u]:

I = the ideal of Rk ⊂ Rn,
J =the ideal of the following union Σ of coordinate

(n − k)-subspaces in Rn: a coordinate subspace
Rn−k is in Σ if its annihilator (Rn−k)⊥ ⊂ Rn∗

covers P when projected to Rk∗.
Another description:
I is generated by n − k linear equations of Rk in Rn,
J is spanned by the monomials um = um1

1 · . . . ·umn

n whose
exponents m ∈ Zn

+ ⊂ Zn being considered as linear functionals
on Rn∗ assume strictly positive values on the (vertices of the)
convex polyhedron (1.1).

In fact, J depends only on the component of p in the reg-
ular value locus of the momentum map P .

The cohomology ring of the toric manifold Mp is canoni-
cally isomorphic to the graded quotient algebra

(1.2) H∗(Mp, Z) ∼= Z[u]/(I + J)
8



The fact that the (complexified) quotient algebra C[u]/(I +J)
has a finite C-dimension reflects the geometric transversality of
Rk ⊂ Rn to all the coordinate (n−k)-subspaces that constitute
Σ (and whose total number equals the Betti sum of Mp).

The isomorphism (1.2) is induced by the composition

H∗(BTn, Z) → H∗(BT k, Z) → H∗(Mp, Z)

where BTn, BT k are classifying spaces of the tori, the left ar-
row is induced by the embedding T k ⊂ Tn, the right arrow
is induced by the classifying map Mp → BT k of the princi-
pal T k-bundle P−1(p) → P−1(p)/T k, and the characteristic
class algebras of Tn and T k are identified with Z[u] and Z[u]/I
respectively.

7. Symplectic periods. In particular the above identifi-
cations determine epimorphisms

(1.3)

Rk∗ −−−−→ H2(Mp, R)

∪ ∪

Zk∗ −−−−→ H2(Mp, Z)

Using (1.3) we indicate the cohomology class of the sym-
plectic form in the cohomology of the toric symplectic manifold
(Mp, ω):

[ω] = image of p ∈ R
k∗ under (1.3).

8. Complex structure. More traditional viewpoint on
toric varieties is that they are complex-algebraic compactifica-
tions of the complex torus (C×)n−k. This torus is the quotient
(C×)n/(C×)k of the complement to the coordinate cross in Cn

by the complexified torus T k. In order to construct the com-
pactification one defines Mp as a quotient (Cn\Up)/(C×)k of a
bigger complex subspace where

Up = union of those coordinate subspaces in Cn
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whose momentum image in Rk∗ does not contain p.

This description provides Mp with a complex structure and
stratification which do not depend on p unless p crosses the
singular value locus of the momentum map P (when it does
the manifold Mp changes itself).

9. First Chern Class. Denote (e∗1, . . . , e
∗
n) the basis in

Rn∗ dual to the standard basis (e1, . . . , en) in Rn. Then

R
k∗ ∋ Σπ(e∗i ) 7→ c(Mp) ∈ H2(Mp, Z)

where c(Mp) is the first Chern class of the tangent bundle of
Mp, and the arrow is the above epimorphism (1.3).

Proof. Generators of the (C×)n−k-action on Mp become linear
dependent holomorphic vector fields on strata of codimension
1. These strata correspond to hyperplane walls of Π and form
a divisor in Mp Poincaré-dual to c(M).

Notice that a codimension-1 stratum is empty iff the cor-
responding wall 〈ei〉⊥ does not cover p in which case however
π(e∗i ) is in the kernel of the epimorphism (1.3) too.

The fact that a wall 〈ei〉⊥ does not cover p actually means
that the representation of Mp as a toric manifold is not mini-
mal in the following sense: one can obtain the same symplectic
manifold as a symplectic quotient of Cn−1 by T k−1. Thus
without loss of generality we will assume further that our toric
manifold Mp is minimal, that is, p is the image of all hyper-
plane walls of Π, and therefore (1.3) is an isomorphism

R
k∗ ≃ H2(Mp, R) .

10. Effective classes. The set E ⊂ Zk = H2(Mp, Z) of
effective homology classes is the intersection of the lattice with
the 1-st orthant in Rn:

(1.4) γ ∈ E ⇐⇒ 〈e∗i , γ〉 ≥ 0 for i = 1, . . . , n.

Indeed, any holomorphic hypersurface in Mp contracts to a
positive linear combination of the codimension-1 strata by the
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action of the imaginary part of the complex quotient torus
Tn

C
/T k

C
, and these strata are Poincaré dual to π(e∗i ).

Example. S2 × S2. Let an action of T 2 on C4 be generated
by π(|z1|2 + |z2|2) and π(|z3|2 + |z4|2). The corresponding pro-
jection π : R4∗ → R2∗ is given by the matrix

[
1 1 0 0
0 0 1 1

]

The image of the first orthant and the corresponding first
Chern class are shown in Figure 1. The toric manifold
P−1(p)/T 2 is S2×S2 provided with a product symplectic form
ω = ω1 ⊕ ω2 with periods

p = (

∫

S2

ω1,

∫

S2

ω2).

It is monotone only if the areas of factors are equal. Effective
homology classes form the first quadrant on the dual lattice
Z2.

It is convenient sometimes to choose a basis in Zk and
determine the projection π : Rn∗ → Rk∗ by an integer k × n-
matrix π = (πij) as in the example. In terms of this matrix,
compactness of the toric manifold means that upon a suitable
choice of the basis in Z

k the matrix has non-negative entries
with positive sum in each column. The 1-st Chern class c(Mp)
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is represented in Rk∗ by the total sum of all columns. Smooth-
ness of Mp (for regular p) means that each k-minor of the ma-
trix such that p is the convex hull of its columns is unimodular
(det = ±1).

Now we are ready to give a combinatorial reformulation of
our main theorem.

Theorem 1.1. Let m = (m1, . . . ,mn) ∈ Zn
+ ∩ Zk be a non-

negative point in the lattice Zk ⊂ Zn, mi ≥ 0, m 6= 0, p ∈ Zk∗

be a primitive (that is, GCD(〈p, ℓ〉|ℓ ∈ Zk) = 1) regular value
of π : Π → Rk∗. Then for any hamiltonian diffeomorphism
Mp → Mp the number of its fixed points is not less than (m1 +
· · · + mn)/〈p,m〉.
Example. S2 × S2. For p = (p1, p2) with p1 ≥ p2 > 0, m =
(m1,m1,m2,m2) Theorem 1 gives rise to

2(m1 + m2)/(p1m1 + p2m2) = 2/

[

p2 +
(p1 − p2)m1

m1 + m2

]

≤ 2

where the equality holds only if p2 = 1 and m1 = 0 (or p1 =
p2).

Our proof of Theorem 1.1 in §6 is based on the machinery
of semi-infinite equivariant Morse theory developed in §§2 − 6
and on properties of some cohomological algebras described
below.

Let C[u, u−1] = C[u±1
1 , . . . , u±1

n ] be the algebra of polyno-
mial functions on the complex torus Cn\(coordinate cross) =
(C\0)n. It contains the polynomial algebra C[u] and we will
treat C[u, u−1] as a C[u]-module. Let us introduce the follow-
ing submodules in C[u, u−1]:

I = the ideal of Ck ⊂ Cn in C[u] (here Ck ⊂ Cn is the
complexification of R

k ⊂ R
n);

Jr = (um,m ∈ Zk|〈p,m〉 ≥ r)C[u] (here p is a regular

integer primitive value of π : Π → Rk∗).
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Proposition 1.2. The quotient algebra C[u]/(I + C[u] ∩ Jr)
is finite dimensional.

Proof. It is a funny combination of Hilbert’s zeroes theorem
with geometry on Newton lattices. Let us think of integer
points m ∈ Zn in Cn as of exponents of basic monomials um ∈
C[u, u−1]. This “Newton lattice” Zn contains a sublattice Zk

(integer points in Ck ⊂ Cn) and a half-lattice

Z
k
r = {m ∈ Z

k|〈p,m〉 ≥ r}

of monomials generating Jr. We assert at first that if Ck has
a nontrivial intersection with a coordinate subspace Cd ⊂ Cn

then the halflattice Zk
r does too. Indeed, if Zk

r ∩ Cd = ∅ then
p|Ck ∩Cd = 0, and if dimCk ∩Cd = ℓ > 0 then the π-image in
Rk∗ of the orthogonal coordinate subspace (Rd)⊥ ⊂ Rn∗ has
positive codimension ℓ and contains p, in which case p would
be an irregular value of π : Π → Rk∗.

Now let us consider a coordinate subspace Cd that does
meet Zk

r at some point m0 (see Figure 2). The first orthant in
Zd ⊂ Cd intersects with the first orthant shifted to m0. This
means that (um0C[u]) ∩ C[u] contains a monomial that (as a
function on Cd) does not vanish in Cd\(coordinate cross).
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Now let us consider in Cn the zero set of the ideal C[u] ∩
Jr. What has been said implies that this set is contained in
the union of those coordinate subspaces Cd in Cn which have
trivial intersection with Ck. In other words: the zero set of
I + C[u] ∩ Jr contains at most one point — the origin. Now
Hilbert’s theorem completes the proof.

Later we will apply this information in the following form.
Let Jr mean the image of Jr in the quotient algebra R =
C[u, u−1]/C[u, u−1]I, J a C[u]-submodule such that Jr+

⊂
J ⊂ Jr− for some r+ > r−.

Corollary 1.3. There exists q ∈ R such that q /∈ J but
u1q, . . . , unq ∈ J .

Indeed, obviously 1 /∈ J1 and thus there is a monomial
u−m which is not in Jr− + IC[u, u−1]. Since

u−m
C[u]/(Jr+

∩ u−m
C[u] + u−mI)

is finite-dimensional one can choose q as a monomials of max-
imal degree in u−mC[u] among those whose image in R is still
not in J .

Remark 1.4. The total Betti sum estimate of the total multi-
plicity of fixed points could also be obtained by Morse-theoretic
tools. But instead of the cohomology algebra C[u]/(I + J) of
the toric manifold (See (1.2)) one would then face another in-
teresting “semi-infinite cohomology algebra”, namely J0/J1.
It is a module (probably free) over

Rp = Span(um,m ∈ Z
k ⊂ Z

n|〈p,m〉 = 0)

and its rank equals the total Betti sum of the toric manifold
Mp.

§2. Least Action Principle

The principle says that fixed points of hamiltonian trans-
formations correspond to critical points of action functionals on
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loop spaces. Following [FW] we intend to consider loops in Cn

lifting a hamiltonian isotopy of a toric manifold Mp = Cn//T k

up to a homogeneous equivariant hamiltonian isotopy of Cn.
In this section we formulate the infinite dimensional Morse -
theoretic problem that arises in this way. By homogeneity we
mean R

×
+-equivariance with respect to the dilatation group ac-

tion in Cn, and we will talk of homogeneous functions, vector
fields and diffeomorphisms in Cn keeping in mind that they are
smooth probably only in Cn\0.

Proposition 2.1. A hamiltonian isotopy ht of a compact toric
manifold Mp = Cn//T k can be lifted up to a T k-equivariant
homogeneous hamiltonian isotopy in Cn.

Proof. Consider the Poisson quotient map C
n → C

n/T k to the
Poisson variety Cn/T k. Its Cazimir functions are components
of the momentum map P : Cn → Cn/T k → Rk∗ and its sym-
plectic leaves are our toric varieties Ms, s ∈ Rk∗. We start
with a hamiltonian function on a smooth symplectic leaf Mp

and extend it somehow to a regular function on Cn/T k homo-
geneous of degree 2 with respect to R

×
+-action. The extension

is possible due to the fact that near Mp the symplectic leaves
form a fibration. Then we pull back the extended hamiltonian
function to Cn. The lifted function is homogeneous of degree 2
in Cn and T k-invariant. This means that its hamiltonian flow
commutes with R

×
+- and T k-actions, preserves P−1(p) and thus

projects to the original flow on Mp = P−1(p)/T k.

Now let Ht denote a homogeneous, degree 2, T k-invariant
hamiltonian on Cn × [0, 1]. We define the action functional

(2.1) A : LC
n × R

k → R

A =

∮

pdq −
∮

Htdt − λ1

∮

P1dt − · · · − λk

∮

Pkdt

on the product of the loop space LC
n and R

k = Lie T k,
where pdq is a potential for the symplectic form in Cn, P =
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(P1, . . . ,Pk) are components of the momentum map of the T k-
action on Cn, λ = (λ1, . . . , λk) ∈ Rk are Lagrange multipliers.
The action functionals

(2.2) Aλ = A|LC
n × {λ}

are homogeneous degree 2 T k-invariant functions on the vec-
tor space LCn. We are going to indicate some relation between
critical points of {Aλ} and fixed points of the time-1 hamilton-
ian transformation h induced by the hamiltonians Ht on the
toric manifold Mp.

At first a fixed point corresponds to a time-1 closed tra-
jectory of the hamiltonian isotopy ht on Mp (h = h1). Since
ht is lifted up to a T k-invariant isotopy in Cn its trajectory in
Mp is lifted to a trajectory in P−1(p). Such a lifting is unique
up to a shift by the T k-action (so it is not unique!) Even
if the trajectory in Mp is closed its liftings can be disclosed.
But they become closed if we replace Ht by Ht + 〈P , λ0〉 with
appropriate λ0. This modification means that the Ht-isotopy
is accompanied by the action of the 1-parametric subgroup
exp(tλ0) ⊂ T k, generated by λ0 ∈ Rk = Lie T k.

The choice of such a “closing” λ0 is not unique: the result-
ing time-1 transformation exp(λ0) will not change if we add to
λ0 any integer vector m ∈ Zk ⊂ Rk.

Summarizing, we can say that a fixed point of h on Mp

corresponds to a Zk-lattice of T k-orbits of closed trajectories
in P−1(p) of hamiltonians Ht + 〈P , λ0 + Zk〉.

According to the Least Action Principle closed trajectories
of hamiltonians Ht + 〈P , λ〉 are critical points of action func-
tionals Aλ on LCn. Due to homogeneity of Aλ all the critical
points have critical value 0 (Euler’s formula for homogeneous
functions). Now we have to extract those critical loops that
are situated in P−1(p).

Let S denote the sphere of all rays (R×
+-orbits) in the loop

space LCn\{zero loop}, Aλ ⊂ S — (the rays on) the zero cone
of the homogeneous function Aλ, A ⊂ S × Rk is the union of
{Aλ}λ∈Rk ,

(2.3) A = [A−1(0)\(0 × R
k)]/R

×
+ .
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We pull back the linear function p : Rk → R to S × Rk and
denote p̂ : A → R its restriction to A. Both A and p̂ are
T k-invariant.

Proposition 2.2. Fixed points of h : Mp → Mp are in one-
to-one correspondence with Zk-lattices of critical T k-orbits of
the function p̂ (see Figure 3)

Proof. Let us notice first that A is nonsingular. Indeed, crit-
ical points of A are those closed trajectories of hamiltonians
Ht + 〈P , λ〉 which satisfy the constraint

∮
P = 0. A critical

trajectory is situated on a level of the momentum map (since
Ht are T k-invariant) and the constraint

(2.4)

∮

P =
−−−→
const

implies the point-wise one

(2.5) P =
−−−→
const

17



In particular if
−−−→
const = 0 the trajectory must be the zero loop

since P−1(0) = 0 (compactness of our toric manifolds!, see §1,
point 3).

Now, a ray in A−1(0) × Rk is critical for p̂ if and only if
it is critical for corresponding Aλ (recall that non-zero critical
points of Aλ always form rays on the zero cone Aλ = 0) and
the derivative of A in λ is proportional to p, that is, along this
ray

∮

P ∼ p .

Together with (2.5) this means that the ray contains a closed
trajectory satisfying P ≡ p, and vice versa.

§3. Fronts and their generating families

We formulate here some technical statements allowing us
to carry out homotopies in families of functions looking at their
discriminants. This technique containing transversality and
Morse-theoretic arguments is clear by itself and becomes es-
pecially obvious after the book Stratified Morse Theory by M.
Goresky and R. McPherson [GM] where we refer the reader for
details.

Let us consider a family f : X × Λ → R of functions fλ

on a compact manifold X where Λ ∋ λ is a parametrizing
manifold. In our applications Λ will be simply a Euclidean
space, and f ∈ C1 with Lipschitz derivatives (so that Morse-
theoretic gradient flow deformations still apply).

We will consider restrictions of such a family to compact
submanifolds Γ ⊂ Λ with boundary ∂Γ and study homotopy
types of sets

F+
Γ = {(x, λ) ∈ X ×Λ|λ ∈ Γ, f(x, λ) ≥ 0}

F−

Γ = {(x, λ) ∈ X × Λ|λ ∈ Γ, f(x, λ) ≤ 0}
Assuming that f−1(0) is non-singular let us define the front

Φ of the family f :
18



Φ = {λ ∈ Λ|f−1
λ (0) is singular}

It is better to think of the front as of a singular hypersur-
face in Λ provided at every point with tangent hyperplane(s)
(not unique in general). In fact, the front can be obtained by
the following contact geometry construction [AVG], v.1. In the
contact manifold PT ∗(X × Λ) of all contact elements (= tan-
gent hyperplanes) on X×Λ we consider a Legendrian subman-
ifold L of such elements tangent to the hypersurface f−1(0).
Intersection of L with the submanifold P of all vertical contact
elements (those tangent to fibers of X × Λ → Λ) is, generally

speaking, a subvariety Φ̂ in P . This subvariety parametrizes
the front Φ in the following two-step way. At first we project Φ̂
to the space PT ∗(Λ) of contact elements on Λ (P → PT ∗(Λ)
projects a vertical contact element on X × Λ to a contact el-
ement on Λ). The image L̂ is a Legendrian subvariety of the
contact structure on PT ∗(Λ) in the sense that it is integral at

its non-singular points. Then L̂ projects to the front Φ in the
base Λ. By a tangent hyperplane to Φ at Λ we mean a contact
element from L̂ ∩ PT ∗

λ (Λ).
For generic f its front Φ actually is a hypersurface because

L̂ is an immersed Legendrian submanifold in this case. In
general if f were smooth Φ would have zero measure due to
Sard’s lemma (Φ is the critical value locus for the projection
f−1(0) → Λ). Our C1-assumption is not sufficient for that
but in our applications Φ will still have zero measure since all
critical points of f−1(0) → Λ will appear to be C∞-points of
f−1(0).

We call a submanifold in Λ transversal to the front Φ if at
its every intersection point with Φ it is transversal to all the
tangent hyperplanes to Φ.

From the definitions we obtain

Proposition 3.1. A submanifold Γ ⊂ Λ is transversal to the
front Φ if and only if X × Γ is transversal to f−1(0).

Corollary 3.2. Suppose that f is C∞ at all critical points
with zero critical values of all functions fλ. Let Γt = ρ−1(t)
be non-singular levels of some smooth map ρ : Γ → Rm. Then
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almost all Γt are transversal to Φ.

Applying standard Morse theoretic arguments we come to
the following proposition.

Proposition 3.3. Suppose that f and Γ deform in a way
that f−1(0) remains nonsingular and both Γ and ∂Γ remain
transversal to the front of f . Then homotopy types of F+

Γ , F−

Γ

do not change during the deformation.

Corollary 3.4. If f varies in a way that its front Φ does not
change, and Γ and ∂Γ are transversal to Φ, then homotopy
types of F±

Γ do not change.

Remarks 3.5. (1) If f is invariant under a fiberwise action of
a compact Lie group (say a torus) on X then all the mentioned
homotopies can be chosen equivariant.

(2) Under assumptions made, not only homotopy types
of F±

Γ remain unchanged but also those of the subdivision
X × Γ = F+

Γ ∪ F−

Γ by f−1(0), so that we can replace F±

Γ

in the proposition and its corollary by the pairs (F±

Γ , F±

∂Γ), or

by f−1
Γ (0) (or by something else). We will refer to homotopy

types of all such spaces as the homotopy type of the function
f |X×Γ itself, keeping in mind that it is the homotopy type with
respect to its zero level only.

(3) All the formulated statements remain valid if we replace
the manifold Γ with boundary by a more complicated stratified
manifold (say the surface of a cube). In thise case one should
improve the transversality definition: Γ is said to be transversal
to Φ if each of its strata is.

Example: Action functionals. We may consider the family

A = {Aλ} : S × R
k → R

of action functionals restricted to the unit sphere S in the loop
space of LCn (at least formally — S is infinite-dimensional
and non-compact). Its front Φ ⊂ Rk consists of those λ for
which the time-1 map of the hamiltonian Ht + 〈P , λ〉 has non-
trivial fixed points. It will be essential later that the front is
periodic in the sense that it is the lifting to R

k of some front
in Rk/Zk (notice that the family Aλ is not periodic in λ).
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Roughly speaking we will use the fact that the front in Rk/Zk

has “bounded geometry” since it is compact.
According to Propositions 2.2 and 3.1 fixed points of our

original hamiltonian transformation on Mp correspond to tan-
gency events of levels p = const of the linear function p : Rk →
R with the front Φ. For integer p the tangency points form
whole (k − 1)-dimensional lattices (due to periodicity of Φ)
and our objective will be to “count” the number of such tan-
gency lattices between two nonsingular levels, say p−1(0) and
p−1(1).

§4. Generating functions of hamiltonian maps

In this section we construct finite-dimensional approxima-
tions to action functionals described in §2. Given a hamil-
tonian isotopy ht of a symplectic manifold (M,ω) we (fol-
lowing M. Chaperon [Cha]) represent it as a composition
hN ◦ · · · ◦ h1 of “small” hamiltonian transformations and (fol-
lowing [Gi1]) define two symplectomorphisms h(N), q(N) of
M (N) = (M × · · · ×M,ω ⊕ · · · ⊕ ω) to itself:

h(N) = (h1, h2, . . . , hN ) the component-wise map

q(N) : (x1, . . . , xN ) 7→ (x2, . . . , xN , x1) the cyclic shift.

Obviously fixed points of the time-1 map h1 are in one-to-
one correspondence with solutions of the equation q(N)(~x) =
h(N)(~x) and with intersection points of graphs of q(N) and
h(N). These graphs are Lagrangian submanifolds in (M (N) ×
M̄ (N), ω(N) ⊖ω(N)) and the second one is close to the diagonal
∆ ⊂ M (N) × M̄ (N). A neighborhood of ∆ is symplectomor-
phic to T ∗∆ and thus the graph H of h(N) represents in T ∗∆
the differential of some function H : ∆ → R. (This function
is called the generating function of H or h(N).) Now assume
that (M,ω) ≃ C

n. Then M (N) × M̄ (N) has a global structure
of the cotangent bundle T ∗∆ and the graph Q of the cyclic
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shift also has a generating function Q. Thus the fixed points
correspond to critical points of F = Q−H. This is the idea of
our construction.

In our actual situation described in §2, we begin with a
homogeneous hamiltonian isotopy ht : Cn → Cn and subdivide
it into the even number 2N of “small” parts (h1, . . . , h2N ) so
that H = H1 × · · · × H2N is a conical Lagrangian graph of
the componentwise map (Cn)2N → (Cn)2N . By a technical
reason we define q(N) as the cyclic shift twisted by the central
symmetry:

q(z1, . . . , z2N ) = (z2, . . . , z2N ,−z1), z1, . . . z2N ∈ C
n ,

so that Q = graph q(N) is a Lagrangian subspace in (Cn ×
C̄n)2N .

Now we introduce in (Cn×C̄n)2N a structure of the cotan-
gent bundle over the diagonal ∆(≃ C2nN) choosing ∆ itself for
its zero section and (Cn × C̄n)2N → ∆ along the antidiagonal

(z1, w1, . . . , z2N , w2N) 7→
(

z1 + w1

2
, . . . ,

z2N + w2N

2

)

for the canonical projection T ∗∆ → ∆. What was said above
implies that F = Q −H is a well defined homogeneous degree
2 function on ∆ whose critical points are in one-to-one corre-
spondence with fixed points of the hamiltonian transformation
(− id) ◦ h1. We call it the generating function of h1.

Remarks 4.1. (1) Q is a non-degenerate quadratic form on
∆: it follows from the fact that the Lagrangian subspace Q
is transversal to the diagonal and anti-diagonal since id and
(− id)2N+1 do not have non-trivial fixed points (this justifies
our choice of “even” subdivisions and the “twisting”).

(2) H is well defined provided that h1, . . . , h2N are suf-
ficiently close to identity and is a homogeneous degree 2 C1-
function with Lipschitz derivatives since H1, . . . ,H2N are coni-
cal Lagrangian subspaces in Cn×C̄n smooth outside the origin.
This implies also that H is C∞ outside the “coordinate cross”
in (Cn)2n.
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(3) Notice that a critical point of F = Q − H, that is, a
discrete loop

(z1, w1, z2, w2, . . . , z2N , w2N ) =

(z1, h1(z1), h1(z1), h2(h1(z1)), . . . , h2N(. . . (h1(z1) . . . ) = −z1)

coincides with the zero loop if at least one of the coordinates
zi − wi vanishes (since hi are small). This means that F is
smooth (C∞) at every non-trivial critical point.

Proposition 4.2. Suppose that all the transformations
h1, . . . , h2N commute with the T k-action on Cn. Then the
generating function F : ∆ ≃ (Cn)2N → R is T k-invariant rel-
ative to the simultaneous action of the torus on all 2N factors
Cn.

Proof. All the ingredients of the above construction — the
symplectic structure in Cn, graphs of hi, ±id: Cn → Cn

and of the cyclic shift — are invariant with respect to the si-
multaneous action of the torus on all factors in (Cn × C̄n)2N .

In particular this proposition means that critical points of
F actually occur as whole T k-orbits of critical rays (due to
the homogeneity and T k-invariance) similar to those of action
functionals Aλ.

Notice also that − id : Cn → Cn commutes with T k-action
and therefore induces symplectic transformations on toric man-
ifolds Mp. Such a transformation is hamiltonian. This means
that any estimate for fixed points of all its compositions with
hamiltonian transformations on Mp will give rise to the same
estimate for all hamiltonian transformations themselves: our
twisting does not affect the resulting supply of symplectomor-
phisms.

The generating function F that we have constructed serves
as a finite-dimensional approximation for a single action func-
tional A0. Now we will take into account the effect of the
Lagrange multipliers.

For a given λ ∈ R
k = LieT k we put t = exp(λ/2N1) where

N1 is big enough to make the transformation t sufficiently close
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to identity and apply the above construction of the generating
function to the decomposition

h2N2
◦ h2N2−1 ◦ · · · ◦ h2 ◦ h1 ◦ t ◦ · · · ◦ t

︸ ︷︷ ︸

2N1 times

of our time-1 hamiltonian transformation h1 : Cn → Cn com-
posed with linear transformation exp(λ) (and twisted by − id
of course). We denote the resulting generating function as

F (N)
λ : (Cn)2N → R, N = N1 + N2.

It will serve us as a finite-dimensional substitute for the action
functional Aλ.

What we can see from this construction is that it does
not work simultaneously for all λ ∈ Rk: N1 must grow with
λ. We will assume further that for given h1 its decomposi-
tion h2N2

◦ · · · ◦ h1 is fixed, and for given N > N2 the family

FN = {F (N)
λ } is defined over a compact domain ΛN ⊂ Rk of

parameter values. For the sake of definiteness let us consider
ΛN to be a cube in Rk (centered at the origin) of the size grow-
ing linearly with N . Thus we come to an exhausting sequence
of generating families

FN : C
2Nn × ΛN → R, ΛN ⊂ R

k, ∪
N

ΛN = R
k.

It is a family of homogeneous degree 2, T k-invariant functions
on (Cn)2N provided with the component-wise action of the
torus.

Now let SN denote a unit sphere S4nN−1 in C2Nn or, to
be more invariant, the sphere of all real rays in C2Nn\0. Each

homogeneous function F (N)
λ determines a subdivision of SN

into positive and negative parts

F±

N = {(x, λ) ∈ SN ×ΛN | F (N)
λ |x ≥ 0(resp. ≤ 0)}

and their intersection
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F 0
N = (F−1

N (0)\ΛN )/R
×
+ = F+

N ∩ F−

N .

We denote p̂N the following composed function on F 0
N :

p̂N : F 0
N ⊂ Sn × ΛN → ΛN ⊂ R

k p−→ R

where p ∈ Rk∗ = (Lie T k)∗ is the linear function that deter-
mines our toric manifold Mp.

Proposition 4.3. F 0
N is a non-singular submanifold in Sn ×

ΛN . Critical T k-orbits of the function p̂N correspond to fixed
points of the hamiltonian transformation − id ◦h2N2

◦ · · · ◦ h1

pushed forward to Mp.

Remark. The correspondence is not one-to-one. Actually the
critical orbits of the functions p̂N fit some Zk-lattices (and ex-
haust them as N → ∞) in the following sense: a fixed point of
our hamiltonian transformation on Mp corresponds to a finite
set of critical T k-orbits of p̂N on F 0

N . This critical set is situ-
ated in SN × ΛN over the part of some lattice λ0 + Zk in Rk

that fits the cube ΛN ⊂ Rk. Proposition 4.3 reduces our sym-
plectic fixed point problem to the lower estimate problem for
the number of such lattices in Rk. This is a sort of equivariant
Lusternik-Schnirelman-Morse-Novikov problem.

Proof. We will look for non-zero critical points of the function

FN : C
2Nn × ΛN → R

and of its restrictions to levels of the linear function

C
2Nn × ΛN → ΛN

p−→ R .

Let us begin with the generating function F (N)
λ0

: C2Nn ×
{λ0} → R. By construction its critical point x0 corresponds to
a fixed point of the map

− id ◦h2N2
◦ · · · ◦ h1 ◦ t ◦ · · · ◦ t : C

n → C
n .

Let z0 be such a fixed point. It also corresponds to an intersec-
tion point of the conical Lagrangian submanifolds Q and Hλ0

in (Cn× C̄n)2N . Let us calculate now partial derivatives of FN

in λ1, . . . , λk at the point z0.
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Lemma. ∂FN

∂λi

(x0, λ0) = −2N1Pi(z0) where P1, . . . ,Pn :
Cn → R are quadratic hamiltonians generating the action on
Cn of coordinate 1-parametric subgroups in T k.

Indeed: (1) The generating function
∫

pdq of a conical La-
grangian submanifold coincides with the restriction of the qua-
dratic form pq/2 to this Lagrangian submanifold.

(2) Its derivative along a linear hamiltonian flow at the
point (p, q) = (0, q0) equals −P(0, q0) where P is the quadratic
hamiltonian of the flow.

(3) Choose (p, q)-coordinates on (Cn × C̄n)2N = T ∗∆ in a
way that p = 0 is an equation of Q, q = const are equations of

fibers in T ∗∆. Then F (N)
λ = Q−Hλ = −

∫
pdq|Hλ.

(4) Hλ is obtained from Hλ0
by the simultaneous action of

T k on the first 2N1 factors C̄n in (Cn × C̄n)2N . Hamiltonians
of this action are −Pi(w1) − · · · − Pi(w2N1

), i = 1, . . . , k.
Combining (1)-(4) we find

(4.1)
∂FN

∂λi
(x0, λ0) = −Pi(tz0) −Pi(t

2z0) − · · · = −2N1Pi(z0) .

Formula (4.1) should be compared with (2.4),(2.5). The
lemma means that

(1) critical points of FN correspond to the fixed points z0

that satisfy the constraints

P1(z0) = · · · = Pk(z0) = 0;

(2) critical points of the restriction FN |p=const correspond
to the fixed points z0 that satisfy the constraints

(P1(z0), . . . ,Pk(z0)) ∼ p = (p1, . . . , pk).

The first system of constraints holds only for z0 = 0 (since
some linear combination of Pi is positive definite due to com-
pactness of Mp, see §1). The second one implies:

∃µ > 0 : µz0 ∈ P−1(p)
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that is, selects fixed points of (− id) ◦ h1 on Mp. Similarly to

Proposition 2.2 the homogeneity of F (N)
λ completes the proof.

Our construction of generating functions depends on the
decomposition

(4.2) h1 = (− id) ◦ h2N ◦ · · · ◦ h1 .

We describe below two moves of the decomposition which
change the homotopy type of the corresponding subdivision
SN = F+ ∪ F− in a controllable way, provided at least that
F+∩F− is nonsingular (that is, if h1 does not have non-trivial
fixed points).

(1) If the decomposition (4.2) varies in a way that h1 re-
mains unchanged and all hi remain small then the homotopy
type of the subdivision SN = F+ ∪ F− does not change.

(2) Suppose that the hamiltonian isotopy ht of Cn consist
of two parts and the first one is a loop (decomposed into 2K
small pieces, id = h2K ◦ · · · ◦ h1. One may compare the gen-
erating function F (N) of the whole isotopy to the generating
functions F (N−K) and G(K) of the parts

h1 = (− id)◦h2N ◦ · · · ◦h2K+1, (− id)◦h2K ◦ · · · ◦h1 , N > K.

We assert that F (N) can be deformed to F (N−K) ⊕ G(K) in
a way such that the homotopy type of the subdivision SN =
F+ ∪ F− does not change during the deformation.

The first statement is obvious. The second one is based
on the following deformation Qε of the Lagrangian subspace
Q = {w1 = z2, w2 = z3, . . . , w2N = −z1}:

(4.3)
z1 + w2K = ε(z2K+1 − w2N )

w2N + z2K+1 = ε(w2K − z1)

For ε = 1 (4.3) is equivalent to two of the equations for Q:
z1 = −w2K , w2K = z2K+1. For ε = 0 we obtain Q1 × Q2

instead of Q where Q1 and Q2 correspond to cyclic shifts in
(Cn)2K and (Cn)2(N−K) respectively. Since H = H1 × H2
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by the very definition, the generating function F (N) converts
into F (N−K) ⊕ G(K) at ε = 0. In between, for 0 < ε < 1, at
intersections of Qε ∩H we have w2K = z1 (since the first part
of the hamiltonian isotopy forms a loop) and thus (4.3) turns
into

z2K+1 =
1

ε
w2K , z1 = −εw2N .

This means that the critical rays of F (N)
ε are the same as those

of F (N) and implies that the deformation of F (N) to F (N−K)⊕
G(K) does not change the homotopy type of the subdivision
SN = F+ ∪ F−, at least if F (N) does not have such critical
rays at all.

Now let us consider the family (in the sense of §3)

FN |SN ×ΛN → R .

It was designed in a way that its front ΦN ⊂ ΛN would consist
of those λ ∈ ΛN for which (− id) ◦ h1 ◦ exp(λ) : Cn −→ Cn

does not have non-trivial fixed points. Therefore ΦN = Φ∩ΛN

where Φ is the front of a suitable family {Aλ} of action func-
tionals (that is, independent on the decomposition). Applying
our two moves to decompositions

(− id) ◦ h2N2
◦ · · · ◦ h1 ◦ t2N1

◦ · · · ◦ t1, ti ∈ T k

with t2N1
◦ · · · ◦ t1 = exp(λ) we conclude that

FN+K|ΛN +m with m ∈ Zk deforms fiberwise into

FN |ΛN
⊕ G(K)

m (where G(K)
m is the generating function

of the “discrete loop” t ◦ · · · ◦ t with t = exp(m/2K))
in such a way that the front ΦN ⊂ ΛN of the family
remains unchanged during the deformation (see Figure
4).
Combining this statement with the results of §3 (see Corol-

lary 3.2 and Remarks 3.4 and 4.1.3) and assuming that the
cubes ΛN are chosen transversal to the (periodic, zero mea-
sure) front Φ ⊂ Rk we obtain the following
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Proposition 4.4. Let m ∈ Zk and ΛN + m ⊂ ΛN+K.

Let G(K)
m : C2Kn → R be the Hermitian generating form

of the “twisted discrete loop” (− id) ◦ t ◦ · · · ◦ t (2K times),
t = exp(m/2K) ∈ T k. Let FN and FN+K be the generating
families of the same exhausting sequence. Then the restricted
family

FN+K|(ΛN + m)

is fiberwise homotopy equivalent to the fiberwise suspension

FN ⊕ΛN
G(K)

m

in the sense that they have the same fronts and for all Γ ⊂ ΛN

transversal to the front ΦN ⊂ ΛN there is a simultaneous T k-
equivariant homotopy equivalence of the subdivisions SN ×Γ =
F+ ∪ F− determined by

FN+K|Γ+m and FN |Γ ⊕Γ G(K)
m .

This homotopy equivalence will serve us as a basis for con-
structing a “semi-infinite limit” of our finite-dimensional ap-
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proximations and at the same time for introducing a Zk-action
(Novikov’s structure) in this limit.

4.5 Examples: Quadratic generating families. . We con-
sider here “generating families” with N = N1 (which actually
generate nothing since N2 = 0).

(1) k = n = 1. The torus T 1 acts by exp(2πλ) on C1. A
straightforward computation shows that Q : C2N → R is an
Hermitian form with the matrix i(1 − U)/(1 + U) which is a
Cayley transform of the unitary matrix of the cyclic shift

U =







0 1
. . .

. . .

1
−1 0







The spectrum of Q is tan( π
2N ℓ) where −N < ℓ < N is

odd integer. The matrix of H is Cayley’s transform of the
scalar matrix t = exp(πλ/N), that is, tan( πλ

2N
). We find that
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the maximal cube ΛN is the interval −N < λ < N , and the
signature of the Hermitian generating family FN = Q − H
depends linearly on λ (as displayed on Figure 5a),

(4.4) signF (N)
λ = −2ℓ for ℓ − 1

2 < λ < ℓ + 1
2 , ℓ ∈ Z.

(2) k = n > 1. It is the direct sum of n copies of example
1. The representation of the torus Tn in C2nN decomposes by
its n coordinate characters into n isotypical 2N -dimensional
components. The equivariant signature of an invariant Her-
mitian form (by definition it is the collection of signatures of
its restrictions to isotypical components of the representation)
is in this case simply a vector sign = (s1, . . . , sn) of n even

integers. Such a vector-function λ 7→ signF (N)
λ is the direct

sum of n copies of (4.4) (see Figure 5b for k = n = 2).
(3) k < n. The generating family in this case is obtained

by restriction of the generating family of example 2 to the
subspace Rk ⊂ Rn in the parameter space.

(4) The Hermitian form G(K)
m from Proposition 4.4 is just

the member of the family of example 2 with λ = m ∈ Zk ⊂
Rn, and its Tn-equivariant signature can also be found on the
diagram 5b.

§5. Equivariant cohomology

We formulate here following [Hs] some facts about torus-
equivariant cohomology and then describe the topological
properties of generating families.

Let X be a topological space provided with an action of
a compact Lie group G. Equivariant cohomology H∗

G(X) is
defined as the usual singular cohomology H∗(XG) of the ho-
motopy quotient

XG = (X × EG)/G .

Here EG → BG is the universal principal G-bundle over the
classifying space BG. The canonical projection

(X × EG)/G → EG/G
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provides H∗
G(X) with a module structure over the character-

istic class algebra H∗(BG) playing the role of the coefficient
ring H∗

G(pt) in equivariant cohomology theory.
In this paper we need only equivariant cohomology of torus

actions. In this case the coefficient ring H∗(BTn) is a poly-
nomial algebra in n variables u = (u1, . . . , un) of degree 2
since the universal bundle of the circle T 1 is the Hopf bun-
dle S∞ → CP∞. We will assume all singular cohomology
to be with complex (rather than integer) coefficients so that

H∗(Y )
def
= H∗(Y, C) and thus

H∗
T n(pt) = C[u1, . . . , un] .

We list below some properties of Tn-equivariant cohomology
(see [Hs]).

1. Let X be a Tn-space, T k ⊂ Tn a subgroup. Then the
homotopy quotients XT n and XT k form the bundle

XT k

T n/T k

−→ XT n

since ETn can be considered as ET k if provided with the sub-
group action. The spectral sequence of this bundle has E2-term

(5.1) Ep,q
2 = Hp

T n(X) ⊗ Hq(Tn/T k)

and converges to H∗

T k(X). The algebra H∗(Tn/T k) is the ex-
terior algebra with n − k generators of degree 1. Their trans-
gression images in H2(BTn) generate in C[u1, . . . , un] the ideal
I of the subspace Rk = Lie T k ⊂ Lie Tn = Rn. It will be im-
portant for us that the E2-term (5.1) is nothing but the Koszul
complex (see [GrH]) of these n − k degree 2 elements in the
algebra H∗

T n(X).
2. Kunneth spectral sequence for equivariant cohomology

is obtained when one considers the product X × Y of two G-
spaces as a G×G-space provided with the action of the diagonal
subgroup G ⊂ G × G. It has the E2-term

E∗,q
2 = Torq

H∗(BG×BG)(H
∗(BG) ⊗ H∗(XG × YG)) .
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In the special case when H∗
G(Y ) is a free H∗

G(pt)-module the
spectral sequence reduces to one line q = 0 provided at least
that G is a torus. Indeed, a resolution of H∗(XG × YG) over
H∗(BG×BG) = C[u, v] is just the tensor product of a resolu-
tion of H∗(XG) over C[u] and a freeC[v]-module H∗(YG) while
C[u, v]-module H∗(BG) is C[u, v]/(ui = vi). This results in
Torq = 0 for q > 0. We conclude that

H∗
G(X × Y ) = H∗

G(X) ⊗ H∗
G(Y )

if G is a torus and H∗
G(Y ) is free.

Our objective now is to study equivariant cohomology of
some spaces related to invariant homogeneous functions and
their families.

We begin with a geometric fact well known in singularity
theory (cf. [AVG], v.2). Let F : CM → R be a homogeneous

degree 2 function, F̂ : C
M+1 → R be its suspension:

F̂(x, z) = F(x) + |z|2 .

We want to compare homotopy types of the corresponding ray
spaces F̂± and F±.

Proposition 5.1. F̂+ ≈ F+ ∗ S1, F̂− ≈ F− where ∗ means
join of topological spaces and S1 = {z ∈ C| |z| = 1}. If F
is invariant relative to a T 1-action on CM then the homotopy
equivalences ≈ can be done equivariant with respect to the di-
agonal action on CM+1: t(x, z) = (tx, tz). If F depends on
additional parameters then the homotopy depends continuously
on them.

Proof. Let us begin with the case when z is a real variable.
In Figure 6 the north semi-sphere D of rays in CM ⊕ R is
shown. It splits into F̂+ and F̂−. Every meridional semi-

circle (through the north pole P = (0, 1)) meets F̂+ along
an arc about the pole. The meridional contraction from the
pole towards the equatorial sphere ∂D contracts F̂− to F−.
On the other hand, the same contraction transforms the pair
(F̂+ ∩D,F+) to (D,F+). Obviously the pair (D,F+) is homo-
topy equivalent to (CF+, F+) where CF+ is the cone (from P )
over its bottom F+ ⊂ ∂D.
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Now, if z is a complex variable, we have a polar circle S1,
and the ray sphere in CM+1 is the union of identical semi-
spheres D, parametrized by S1, with common equator ∂D.
From what was said above we conclude that F̂+ is homotopy
equivalent to

S1 × CF+/((z, x) ∼ (z′, x) for x ∈ F+) ,

that is, to S1 ∗ F+.

Since all the homotopies above are carried out in a canon-
ical way, they respect group actions and parametric depen-
dence. �

It is time now to disclose the sort of equivariant cohomol-
ogy that we intend to use in the proof of our main theorem.
Let us consider the family

FN : C
M × ΛN → R , M = 2nN ,

of homogeneous T k-invariant functions parametrized by the
cube ΛN . Let

SN ×ΛN = F+ ∪ F−
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be the decomposition of the ray space into its positive and
negative parts (with respect to FN), and

∂F± = F± ∩ (SN × ∂ΛN )

—the parts of F± situated over the boundary of the cube ΛN .
We intend to deal with the relative T k-equivariant cohomology
(with complex coefficients)

H∗

T k (F−, ∂F−) .

In order to figure out the algebraic structure of this module it
is convenient to introduce the pair (CF−, F−), where CF− ⊂
CM × ΛN means the fiberwise cone over F−, that is, the cone
of the projection map F− → ΛN . It is natural to call the
quotient space CF−/F− the fiberwise suspension and denote
it ΣΣΣF− referring to the quotient point F− as the distinguished
one.

From the long exact sequence of the pair (CF−, F−)

→ H∗−1
T k (F−, ∂F−) → H∗

T k(ΣΣΣF−,ΣΣΣ∂F−) →

→ H∗

T k (CF−, C∂F−) →
one extracts the short exact segments

(5.2) 0 → H̃∗−1
T k (F−, ∂F−) → H∗

T k(ΣΣΣF−,ΣΣΣ∂F−) → JF → 0

where JF is the kernel of the homomorphism

H∗

T k(ΛN , ∂ΛN ) → H∗

T k(F−, ∂F−) ,

and H̃∗ denotes its cokernel. We will call this cokernel the
reduced equivariant cohomology. Since ΛN/∂ΛN is homeo-
morphic to a sphere with the trivial torus action we find
H∗

T k (ΛN , ∂ΛN) to be a free H∗

T k (pt)-module of rank 1 generated
by the fundamental cocycle of the sphere, and JF is a submodule
in this module. The exact segments (5.2) reduce computation

of H∗

T k(F−, ∂F−) to that of JF and H̃∗

T k(F−, ∂F−). We state
below how the suspension of Proposition 4.4 effects these data.
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Proposition 5.2. Let F̂N+K = FN ⊕ΛN
G(K)

m be the fiber-
wise direct sum of the family FN with the Hermitian form

G(K)
m : C2Kn → R of Proposition 4.4 and F̂−, F− denote the

corresponding ray spaces. Then

(5.3) H̃∗

T k (F̂−, ∂F̂−) = H̃∗

T k (F−, ∂F−) ⊗ IK+m ,

JF̂ = JF ⊗ IK+m ,

where ⊗ means the tensor product of H∗

T k (pt)-modules, and

IK+m is the principal ideal in H∗

T k(pt) generated by the mono-

mial uK+m = uK+m1

1 ·uK+m2

2 · . . . ·uK+mn

n (recall that H∗

T k (pt)
is a quotient of H∗

T n(pt) = C[u1, . . . , un]).

Proof. It consists of the following three kinds of arguments.
(1) An equivariant decomposition of the Hermitian form

G(k)
m into the direct sum of one-dimensional forms and multiple

application of Proposition 5.1 shows that F̂− is the fiberwise
join F− ∗ΛN

G− of F− with the negative ray space G− of the

Hermitian form G(K)
m .

(2) Equivariant cohomology of joins. Let Y be a family
of T k-spaces parametrized by Λ, X be another T k-space, and
X ∗Λ Y be their fiberwise join. The fiberwise suspension op-
eration ΣΣΣ transforms functorially fiberwise joins into tensor
products:

ΣΣΣ(X ∗Λ Y) ≃ ΣX ⊗ΣΣΣY

where ⊗ is the product operation in the category of punctured
spaces,

(A, pt) ⊗ (B, pt) = A × B/(A × pt) ∪ (pt × B) .

Now Proposition 5.2 reduces to the (relative) equivariant Kun-
neth formula provided that H∗

T k(ΣG−, pt) is a free H∗

T k (pt)-
module (see point 2 above).

(3) The following computation of H∗

T k (ΣG−, pt) completes
the proof.
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Proposition 5.3. JG = IK+m, H̃∗

T k (G−) = 0.

We consider here G(K)
m formally as a “family” parametrized

by a point so that JG ⊂ H∗

T k(pt).

Proof:. inductive application of Proposition 5.1. Let us begin
with the S1-invariant form a|z|2 on C1. Then

G− =

{
S1 a ≤ 0

∅ a > 0 ,

and a simple straightforward computation gives

H∗
S1(ΣG−, pt) =

{
uC[u] a ≤ 0

C[u] a > 0 .

The same answer is still valid for the “multiple” circle ac-
tion (eiφ, z) 7→ einφz, n ∈ Z (it is essential here that we use
rational — or even complex — coefficients instead of integers).

Now suppose that T k acts on C1 through its character
χ : T k → S1 and denote u an equation of kerχ in Lie T k

(identifying H∗

T k (pt) with C[Lie T k]). Then

H∗

T k (ΣG−, pt) =

{
uH∗

T k(pt) a ≤ 0

H∗

T k(pt) a > 0 .

Let us now consider the generating Hermitian form G(K)
m

of the “discrete loop” −id ◦ t ◦ · · · ◦ t (2K times), where t =

exp(πim/K) is a hamiltonian transformation of C1. Then G(K)
m

has K −m positive and K + m negative squares (cf. Example
4.5). Applying Proposition 5.1 together with the equivariant
Kunneth formula we find

H∗

T k(ΣG−, pt) = uK+mH∗

T k (pt) .

In the end we notice that G(k)
m in Proposition 5.3 corre-

sponds to the transformation

t = diag(eπim1/K , . . . , eπimn/K)
37



on Cn and is the direct sum of n 2K-dimensional Hermitian
forms considered above. Applying Proposition 5.1 and the
Kunneth formula once again we conclude that

H∗

T k (ΣG−, pt) = uK+m1

1 . . . uK+mn

n H∗

T k(pt) ,

where u1, . . . , un are images in H∗

T k (pt) of generators in
H∗

T n (pt).�

Our last step in this section is an asymptotic computation
of the relative equivariant cohomology H∗

T k(F−, ∂F−) for the

quadratic generating family FN : C2nN ×ΛN → R of Example
4.5 in the limit N → ∞. To my taste it is the most elegant
point in the proof of our main theorem.

We begin with the case k = n, that is, {ΛN} is a sequence
of cubes exhausting the parameter space Rn = Lie Tn. Our
objective is to restrict the quadratic families FN to a convex
compact r-dimensional polyhedron Γ ⊂ Rn and calculate

H∗
T n(Γ) = lim

N→∞
u−N · H∗+2N

T n (F−

N |Γ, F−

N |∂Γ) .

(We will see in the next section how such a limit corresponds
to some semi-infinite cohomology.)

The answer is that the reduced part of this cohomology is
trivial (H̃∗

Γ = 0) and the corresponding “kernel” module JΓ can
be easily described in terms of Newton diagrams in the same
space R

n. This means that we should interpret the lattice Z
n

in the parameter (!) space Rn as the lattice of exponents of

monomials uℓ = uℓ1
1 . . . uℓn

n . To be more precise, we introduce
in Rn new coordinates µ1 = λ1 − 1

2
, . . . , µn = λn − 1

2
, associate

an integer point µ = ℓ with the monomial uℓ ∈ C[u, u−1] and
attach some open Newton diagram ∆Γ to the polyhedron Γ:

∆Γ = {µ ∈ R
n|∃γ ∈ Γ : µi > γi, i = 1, . . . , n} = Γ + R

n
+

(see Figure 7a).

Proposition 5.4.

H∗
T n(Γ) = Hr(Γ, ∂Γ) ⊗C C[u, u−1]/JΓ ,
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where JΓ is the C[u]-submodule in C[u, u−1] generated by the
monomials uℓ with ℓ ∈ ∆Γ.

Proof. The idea is to apply Leray spectral sequences [GrH].

The Leray spectral sequence of a map X
π−→ Λ converges to

the cohomology of the “total space”, H∗(X), and has

Ep,q
2 = Hp(Λ,J q)

where J ∗ is the local coefficient sheaf whose fiber at λ ∈ Λ
is J ∗

λ = H∗(π−1(λ)). The same construction applies to equi-
variant cohomology provided that the group action on X is
fiberwise.

In our case Λ = Γ ⊂ Rn, X = F−, and the equivariant
cohomology of fibers has just been described in Proposition
5.3:

Jλ = C[u]/(uN+m) , m = [λ + 1
2
] = [µ + 1] ,

(see Examples 4.5.1, 4.5.2). We will find below

Ep,∗
2 = Hp(Γ, ∂Γ;J ∗)

and observe that it is non-trivial only for p = r. This will mean
in particular that E∗,∗

2 = E∗,∗
∞ = H∗

T n(F−|Γ, F−|∂Γ).
We will carry out our computation of E∗,∗

2 in the limit of
large N . This makes convenient the following “re-grading” of
the sheaf J ∗:

Ĵ ∗
λ = lim

N→∞
u−N

C[u]/(um) = C[u, u−1]/C[u] · um .

The idea of our computation of H∗(Γ, ∂Γ; Ĵ ∗
λ ) is to decom-

pose the constant sheaf C[u, u−1] into one-dimensional mono-
mial components C ·uℓ and apply the following pretty obvious
general lemma.

Lemma. Let C be a constant sheaf on a topological space X,
IY be the subsheaf vanishing on the closed subspace Y ⊂ X,
C/IY be the quotient sheaf supported at Y . Then
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H∗(X, IY ) = H∗(X,Y ) , H∗(X, C/IY ) = H∗(Y ) .

The monomial uℓ ∈ C[u, u−1] is contained in the C[u]-
submodule (um) only iff ℓ ≥ m. This event is supported in
the open “last orthant” µj < ℓj , j = 1, . . . , n. Let Y be its
complement in Rn. Applying the lemma we find (Figure 7b)

H∗(Γ, ∂Γ; C/IY |Γ) =

{
C ∗ = r and Γ ⊂ Y

0 otherwise

since Γ/∂Γ is an r-dimensional sphere and Γ ∩ Y contracts to
∂Γ if Γ 6⊂ Y . Taking the direct sum over all the monomials uℓ

we get

H∗(Γ, ∂Γ; Ĵ ∗) = Hr(Γ, ∂Γ) ⊗C C[u, u−1]/JΓ
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where the C[u]-submodule JΓ is spanned by those monomials
uℓ whose “last orthant” {µ|ℓ + Rn

−} meets Γ. Or, in other
words, (Figure 7a)

JΓ = 〈uℓ|ℓ ∈ Z
n : ℓ ∈ Γ + R

n
+〉 .

Now let us consider the case where ΓN is a sequence of, say,
k−1-dimensional cubes exhausting a (k−1)-dimensional affine
subspace Γ in Rn parallel to the subspace Rk ∩ p−1(0) ⊂ Rk ⊂
Rn. Then JΓN

⊂ JΓN+1
⊂ . . . and the union is the submodule

JΓ ⊂ C[u, u−1] spanned by the monomials uℓ supported at the
Newton diagram ∆Γ = Γ + Rn

+. The submodule JΓ should be
compared to

Jr = 〈uℓ, ℓ ∈ Z
k ⊂ Z

n|〈p, ℓ〉 ≥ r〉C[u]

considered in the end of §1, and one concludes that they are
basically the same (up to a shift of the origin in the lattice
Zn). To be more precise, Jr (r ∈ R) and JΓ (Γ is parallel to
Rk ∩ p−1(0)) majorate each other:

(5.5)
∀Γ∃r+ > r− : Jr+

⊂ JΓ ⊂ Jr− ,

∀r ∃Γ+,Γ− : JΓ+
⊂ Jr ⊂ JΓ−

.

Let us denote JΓ (resp. Jr) projections of JΓ (resp. Jr) to
R = C[u, u−1]/I ·C[u, u−1], where I is the ideal of Ck ⊂ Cn in
C[u]. The same inclusions (5.5) hold for JΓ,Jr of course.

Corollary 5.5 (k < n).

lim
N→∞

H∗

T k(ΓN ) = Hk−1(Γ,∞)⊗
C

R/JΓ.

Proof. T k-equivariant cohomology is related to Tn-equivari-
ant cohomology by means of Serre’s spectral sequence whose
E2-term is the Koszul complex (5.1). For a regular linear func-
tion p : R

k → R the n−k equations of R
k in R

n form a regular
sequence in the algebra

C[u, u−1]/C[u, u−1]JΓ
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since it is true for Jr instead of JΓ (as it was shown in §1) and
due to inclusions (5.5). Therefore the Koszul complex has only
0-dimensional (in our grading) homology

E∗,0
2 = (C[u, u−1]/(C[u, u−1]I + JΓ))⊗

C

Hk−1(Γ,∞),

and the spectral sequence degenerates, that is E2 = E∞.

§6. Semi-infinite cohomology

We combine here Propositions 4.4 and 5.2 in order to define
semi-infinite cohomology related with our generating families,
describe its Morse-theoretic properties and prove Theorem 1.1.

Throughout this section p : Rk → R is a regular primitive
integer value of the momentum map of the T k-action in Cn.

Let FN : SN × ΛN → R be generating families (of the
hamiltonian transformation h1 : Mp → Mp) constructed in §4
so that ΛN ⊂ ΛN ′ ⊂ · · · ⊂ Rk form an exhausting sequence of
cubes. Let

ΓN (ν) = ΛN ∩ p−1(ν)

be their intersection with hyperplane levels of the linear func-
tion p. Let F−

N (ν), ∂F−

N (ν) denote negative ray spaces of the
families FN |ΓN(ν), FN |∂ΓN (ν). For N < N ′ we have natural
homomorphisms
(6.1)
H∗

T k(F−

N ′(ν)|ΓN (ν), F
−

N ′(ν)|∂ΓN (ν)) → H∗

T k(F−

N ′(ν), ∂F−

N ′(ν)).

For generic ν the hyperplane p−1(ν) is transversal to the
front of the generating families FN and in accordance with
Proposition 4.4 there is an equivariant homotopy equivalence
of the families

FN ′|ΓN (ν) and (FN ⊕ GK
0 )|ΓN (ν), K = N ′ − N.

Together with isomorphisms (5.3), (5.4) of Proposition 4.4 (ap-
plied to the families restricted to ΓN (ν)) this gives rise to the
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raising dimensions monomorphisms (6.2), (6.3):
(6.2)

H
∗+2N

T k (F−

N (ν), ∂F−

N (ν)) → H
∗+2N

′

T k (F−

N ′(ν)|ΓN (ν), F
−

N ′(ν)|∂ΓN (ν))

↑ ↑
(6.3)

H∗+2N
T k (ΓN (ν), ∂ΓN (ν))

uK
×−−−→ H∗+2N ′

T k (ΓN (ν), ∂ΓN (ν)).

Combining (6.1) and (6.2) we obtain homomorphisms

(6.4) H∗+2N
T k (F−

N (ν), ∂F−

N (ν)) → H∗+2N ′

T k (F−

N ′(ν), ∂F−

N ′(ν)).

Definition 6.1. We define semi-infinite equivariant cohomol-
ogy

H∗

T k(F−(ν)) = lim
N→∞

H∗+2N
T k (F−

N (ν), ∂F−

N (ν))

as the direct limit over the directed system (6.4).

Let us list some algebraic properties of H∗

T k .
1. Spaces H∗

T k(F−(ν)) descend the structure of graded
H∗

T k (pt)-modules of ordinary equivariant cohomology.
2. The direct limit H∗

T k (Γ(ν)) of

H∗+2N
T k (ΓN (ν), ∂ΓN (ν))

uK
×−−−→ H∗+2N ′

T k (ΓN ′(ν), ∂ΓN ′(ν))

is isomorphic to H∗(Rk−1,∞)⊗
C

R, where

R = C[u, u−1]/C[u, u−1]I,

(I is the ideal of Ck ⊂ Cn in C[u]) and Rk−1 = Γ(ν) = p−1(ν).
The diagram (6.2-6.3) gives rise to the “augmentation homo-
morphisms” of C[u]-modules

(6.5) H∗

T k (Γ(ν)) → H∗

T k (F−(ν)).

We denote its kernel J ∗(F−(ν)) and cokernel H̃∗

T k(F−(ν)) and
call the latter the reduced semi-infinite cohomology.
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3. Our computation in the end of §5 shows that for the
quadratic generating families of Example 4.5.3 (let us denote

them here GN) H̃∗(G−(ν)) = 0 and

(6.6) J ∗(G−(ν)) = JΓ(ν) (in notations of §5).

In the very bottom of all our constructions there is a ho-
mogeneous degree 2 hamiltonian in Cn. Such a hamiltonian H
can be bounded by quadratic hamiltonians, H− < H < H+.
It is easy to see that this leads to an estimate of ray spaces

G−

N (ν−) ⊂ F−

N (ν) ⊂ G−

N (ν+)

for some ν− < ν < ν+ and to homomorphisms

H∗

T k(G−(ν+)) → H∗

T k(F−(ν)) → H∗

T k(G−(ν−)).

Together with (6.5), (6.6) and (5.5) this gives rise to the esti-
mate

(6.7) Jr+
⊂ J ∗(F−(ν)) ⊂ Jr−

(where Jr± are images of Jr± of (5.5) in R, see §1). In partic-
ular J ∗(F−(ν)) is a nontrivial submodule in R.

4. Applying Proposition 4.4 and 5.2 in a manner similar
to our definition of semi-infinite cohomology but with non-zero
m ∈ Zk we obtain isomorphisms

Um : H∗

T k(F−(ν))
≃−→ H∗

T k(F−(ν + p(m))

which form lattice’s action: Um ◦ Um′ = Um+m′ . This
is nothing but Novikov’s action of the fundamental group
H2(Mp, Z) of the loop space LMp. Notice that the sublat-
tice Zk−1 = p−1(0) ∩ Zk acts on the semi-infinite cohomology
space H∗

T k(F−(ν)) itself providing it with structure of C[Zk−1]-
module.

The action of Um on R is just the multiplication by um =
um1

1 . . . umn

n . Therefore multiplication by um with m ∈ Zk ⊂ Zn

is an isomorphism

(6.8) Um : J ∗(F−(ν))
≃−→ J ∗(F−(ν + p(m)).
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In particular J ∗(F−(ν)) is invariant with respect to such mul-
tiplication if p(m) = 0.

Now let us consider the action functional p̂ : A → R of
§2. According to Proposition 2.2 its (lattices of) critical orbits
correspond to fixed points of the hamiltonian transformation
h1 : Mp → Mp.

Proposition 6.2. Suppose that the function p̂ does not have
critical values on the closed segment [ν0, ν1] ⊂ R. Then
H∗

T k (F−(ν0)) ≃ H∗(F−(ν1)).

Proposition 6.3. Suppose that the function p̂ has only one
critical value within the segment [ν0, ν1] and that all the critical
T k-orbitst on this level are isolated. Let v ∈ H∗

T k(pt) be a posi-
tive degree element and q0 ∈ H∗

T k(F−(ν0)), q1 ∈ H∗

T k(F−(ν1))
be images of the same q ∈ R under the homomorphism (6.5).
Then q0 = 0 implies vq1 = 0.

Proof. Proof of Proposition 4.1 is based of course on Proposi-
tion 4.3 and “gradient flow” deformations between F−

N (ν0) and
F−

N (ν1). But we should prevent their “topology” from “flowing

out” through their boundaries ∂F−

N (ν).

Lemma. If ν∗ is a regular value of p̂ then there exists a non-
zero segment [ν∗−ε, ν∗+ε] and an exhausting sequence of cubes
ΛN ⊂ ΛN+1 ⊂ · · · ⊂ Rk such that all ΓN (ν), ∂ΓN (ν) remain
transversal to the front Φ ⊂ Rk for ν from the segment.

Applying this lemma and Proposition 3.3 we obtain a se-
quence of equivariant homotopy equivalences

(F−

N (ν∗ − ε), ∂F−

N (ν∗ − ε)) ≈ (F−

N (ν∗ + ε), ∂F−

N (ν∗ + ε))

and thus an isomorphism of semi-infinite cohomology
H∗

T k (F−(ν∗ − ε)) ≃ H∗

T k(F−(ν∗ + ε)). The proof completes
by choosing a finite subcovering of [ν0, ν1] by such segments.

Our proof of the lemma is based on the fact that the front
Φ of the family A = {Aλ} of action functionals is Zk-periodic.
The hyperplane Γ(ν∗) = p−1(ν∗) is transversal to Φ since ν∗ is
regular value of p̂ (Proposition 3.1). Due to Corollary 3.2 we
can choose k−1 coordinate hyperplanes in Γ(ν∗) such that they
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and all their intersections are transversal to Φ ∩ Γ(ν∗). Then
all their integer translations are also transversal to Φ (period-
icity!). Now we can choose an exhausting sequence of growing
integer cubes framed by this coordinate net. Corresponding
ΓN (ν) and ∂ΓN (ν) will be transversal to Φ for ν = ν∗ and
thus for all ν in some neighborhood of ν∗ (we use here open-
ness of transversality provided that Φ/Zk is compact).

The same arguments apply even if ν∗ is an isolated critical
value of p̂ but in this case Γ(ν∗) itself is tangent to Φ. In
the proof of Proposition 4.2 one may assume without loss of
generality that

(1) ν0 = ν∗ − ε, ν1 = ν∗ + ε,
(2) there is only one (lattice of) critical orbit(s) on the level

ν∗,
(3) (F−

N (ν0), ∂F−

N (ν0))is embedded into(F−

N (ν1), ∂F−

N (ν1))
as the complement to a neighborhood of the critical orbit(s)
(use isotopy of Proposition 3.3 outside of this neighborhood),

(4) the semi-infinite cohomology class q ∈ R ≃
H∗

T k (Rk−1,∞) is represented by a non-zero cohomology class

q ∈ H∗

T k (F−

N (ν1), ∂F−

N (ν1))

which vanishes when restricted to (F−

N (ν0), ∂F−

N (ν0)).
The latter implies that q1 is the image of some α ∈

H∗

T k (F−

N (ν1), F
−

N (ν0)) under the connecting homomorphism δ
in the long exact sequence

→ H∗−1
T k (F−

N (ν1), F
−

N (ν0))
δ−→ H∗

T k(F−

N (ν1), ∂F−

N (ν1)) →
→ H∗

T k(F−

N (ν0), ∂F−

N (ν0)) → . . .

The crucial point now is that in a neighborhood of the
critical orbit the T k-action is free—due to non-singularity of
our initial toric manifold in fact. This implies that the equi-
variant cohomology H∗

T k(F−

N (ν1), F
−

N (ν0)) is isomorphic to the

usual cohomology H∗(F−

N (ν1)/T k, F−

N (ν0)/T k) of the quotient
neighborhood of our critical orbit. The coefficient algebra
H∗

T k (pt) acts trivially in the usual cohomology! Thus

vα = 0 and vc1 = δ(vα) = 0.
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Remark 6.4. In a similar manner one can show that in the
long exact sequence of semi-infinite cohomology

→ H∗

T k (F−(ν1), F
−(ν0)) → H∗

T k (F−(ν1)) → H∗

T k(F−(ν0)) →
the left term is a free rank 1 C[Zk−1]-module provided that
the segment [ν0, ν1] contains only one Zk−1-lattice of non-
degenerate critical T k-orbits.

Proof of Theorem 1.1. Our ship is fully loaded now.
Let p : Rk → R be a primitive integer value of the momen-

tum map Cn → Rk∗. We are going to count critical levels of
the function p̂ : A → R between two non-singular levels ν and
ν + 1. On every critical level there is at least one Zk−1-lattice
of critical T k-orbits, all corresponding to the same fixed point
of the hamiltonian transformation − id ◦h1 on our toric mani-
fold Mp (Propositions 2.2, 4.3). To the same fixed point there
correspond therefore ℓ critical levels of p̂ between regular levels
ν and ν + ℓ.

Let m = (m1, . . . ,mn) ∈ Zk ⊂ Zn be positive, that is
mj ≥ 0. We will show that the number #(m) of critical values
of the function p̂ between regular values ν and ν̂ = ν +〈p,m〉 is
not less than 〈c,m〉 (= m1 + · · ·+mn). This would imply that
the total number of fixed points is not less than 〈c,m〉/〈p,m〉.

Applying Corollary 1.3 to J = J ∗(F−(ν)) (see (6.7)) we
find some q ∈ R such that q /∈ J but u1q, . . . , unq ∈ J . If
#(m) < m1+· · ·+mn then um1

1 . . . umn

n q ∈ J ∗(F−(ν̂)) (Propo-
sitions 6.2, 6.3).

On the other hand multiplication by um is the isomorphism
(6.8): J ∗(F−(ν)) → J ∗(F−(ν̂)) and thus umq /∈ J ∗(F−(ν̂)).

This contradiction completes the proof.

Remark 6.5. One could prove the Morse-type estimate # ≥
dim H∗((Mp) for the number of non-degenerate fixed points
of a hamiltonian transformation (without a reference to the
Lefschetz theorem) combining Remark 6.4 with the fact that
C[Zk−1]-module

J ∗(F−(ν))/J ∗(F−(ν + 1))

has the same rank as J0/J1 (equal to dim H∗(Mp), see Remark
1.4).
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cations globalement canonique de la méchanique classique, C.
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